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Abstract. HYCOMP is a model checker for hybrid systems based on Satisfi-
ability Modulo Theories (SMT). HYCOMP takes as input networks of hybrid
automata specified using the HyDI symbolic language. HYCOMP relies on the
encoding of the network into an infinite-state transition system, which can be an-
alyzed using SMT-based verification techniques (e.g. BMC, K-induction, IC3).
The tool features specialized encodings of the automata network and can dis-
cretize various kinds of dynamics.
HYCOMP can verify invariant and LTL properties, and scenario specifications;
it can also perform synthesis of parameters ensuring the satisfaction of a given
(invariant) property. All these features are provided either through specialized
algorithms, as in the case of scenario or LTL verification, or applying off-the-
shelf algorithms based on SMT. We describe the tool in terms of functionalities,
architecture, and implementation, and we present the results of an experimental
evaluation.

1 Introduction

Embedded systems (e.g. control systems for railways, avionics, and space) feature the
interaction of discrete systems with the environment by means of controlled and mon-
itored variables that evolve continuously in time. The validation and verification of
embedded systems designs must often take into account a model of the continuous
evolution of such variables. Hybrid systems [26] are a clean modeling framework for
embedded systems because they exhibit both continuous transitions ruled by flow con-
ditions and discrete changes represented with logical formulas.

A fundamental step in the design of these systems is the validation and verifica-
tion of the models, performed by checking specifications expressed e.g. as invariants,
temporal-logic formulas, or scenarios. In spite of the undecidability of these problems,
several verification techniques have been developed and have proved to be applicable
in a wide number of cases. An emerging approach to the verification of hybrid systems
is the application of techniques based on Satisfiability Modulo Theories (SMT). The
hybrid system is encoded into a symbolic transition system and reachability problems
are represented by means of first-order formulas, which can then be solved with SMT-
based techniques. Thanks to the strong progress in the field of SMT, these approaches
are increasingly applied in real settings.
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In this paper we present HYCOMP, a symbolic model checker for hybrid systems.
HYCOMP is built on top of the NUXMV model checker [9], and implements various
verification techniques based on SMT. HYCOMP takes as input networks of hybrid au-
tomata specified using the HyDI symbolic language [15]. HYCOMP relies on the encod-
ing of the network into an infinite-state transition system, which can then be analyzed
using various SMT-based verification techniques provided by NUXMV (e.g. BMC, K-
induction, IC3). The tool features specialized encodings of the automata network and
can discretize various kinds of dynamics. HYCOMP can verify invariant and LTL prop-
erties [14], and scenario specifications [16]; it can also perform synthesis of parameters
ensuring the satisfaction of a given (invariant) property [12]. The tool has been used as a
research platform for developing novel verification techniques, both for hybrid systems
[8, 16, 14, 33, 17] as well as for more general infinite-state systems [12, 13]. Moreover,
it has been used in different projects, both industrial and research-oriented ones (such
the ESA-funded projects IRONCAP and HASDEL, and the FP7 project MISSA). In
these projects HYCOMP turned out to be really useful to support the analysis of asyn-
chronous systems (also in the discrete case, as a front-end to NUXMV) and to solve
expressive verification problems (e.g. to verify temporal properties of real-time sys-
tems). The tool is freely available for non-commercial use and can be downloaded at
http://hycomp.fbk.eu. In this paper, we focus on the technical details about
HYCOMP as a tool.

Related tools There exist several related tools and languages for the verification of hy-
brid systems. These tools are mainly focused on the verification of invariants and most
of them compute an overapproximation of the set of the reachable states. HYTECH [24]
is a model checker for linear hybrid automata, which represents the continuous part of
the reachable states using polyhedra. PHAVER [21] and SPACEEX [22] model affine
continuous dynamics with inputs. They check invariant properties computing an ap-
proximation of the set of the reachable states using different techniques (polyhedra and
support functions). Other model checkers, HSOLVER [36], D/DT [3] and ARIADNE [6],
FLOW* [10], verify invariants of non-linear hybrid systems.

KEYMAERA [35] is a theorem prover for hybrid systems. It can handle non-linear
hybrid systems, with symbolic parameters and an unbounded number of components.
Opposed to HYCOMP, it may require a manual user intervention during the proof pro-
cess and it supports a subset of LTL properties.

HybridSAL [37] is very similar to HYCOMP. The tool encodes linear hybrid sys-
tems as infinite-state transition systems, which can be verified using the SAL [32] model
checker. HybridSAL also implements other abstraction techniques (e.g. See [40]), but
it does not implement the quantifier free encoding for polynomial hybrid systems. The
tool cannot prove LTL properties, it does not provide verification algorithms that ex-
ploit the hybrid automata network, and is not integrated with the efficient invariant
verification algorithms of NUXMV (e.g. IC3).

In the fragment of timed automata, the reference tool is UPPAAL [5]. It supports
the model checking of a subset of TCTL (Timed Computation Tree Logic) properties.
The reachability is explicit in the discrete states of the automata. The tool does not
handle hybrid systems and LTL properties. Moreover, UPPAAL does not allow the user
to model parametric designs.



ATMOC is an SMT-based model checker for invariant [30], LTL [28] and MITL [29]
properties for symbolic timed automata.

MCMT [23] and PASSEL [27] are two other SMT-based tools for verifying pa-
rameterized systems composed by timed or linear hybrid automata. They differ since
the focus is on systems with an infinite number of processes, which HYCOMP can-
not handle. They cannot verify LTL and scenario specification, while only MCMT can
synthesize parameters. Neither of them can analyze systems with complex dynamics.

Outline In §2, we give a brief overview of the HyDI modeling language. In §3 we
describe the tool functionalities; we provide implementation details in §4, and in §5 we
present results of an empirical evaluation of HYCOMP wrt. related state-of-the-art tools.
We conclude the paper in §6.

2 Modeling Language

Overview The input language of HYCOMP is HYDI [15] (Hybrid automata with DIs-
crete interaction). A HYDI program describes a network of hybrid automata interacting
with standard discrete synchronizations. HYDI extends the language of the NUXMV
model checker (which in turn extends the language of the NUSMV model checker with
infinite domain types) with specific constructs related to the hybrid semantics and to
the synchronization of asynchronous processes. The network is defined in the main
module, which declares a set of processes (defined by instantiations of modules) and
a set of synchronizations. The modules contain the definition of the hybrid behavior.
The discrete-time part is described with a set of discrete variables (e.g., Boolean, inte-
ger, real) and a set of formulas representing the initial states, the invariant conditions,
and transition relation. The continuous-time part is described with continuous variables,
flow and urgent conditions.

A simple example Figure 1 shows a small example of communicating tanks specified in
HYDI. Each tank has an input and output flow of water. The input water flows only in
one of the tanks and when this tank is full, a valve switches the water flow to the other
tank. While one tank is being filled with new water, the other is being emptied since
there is always a flow of water that goes out of each tank.

More specifically, tank1 and tank2 are two instances of the module Tank, which
is instantiated with different values of the parameters. These are a flag initial, which
chooses which tank initially takes the incoming water, the maximum input flow, and
the minimum output flow. The synchronizations connect the event noflowin of tank1,
which represents the stop of flow in tank1, with the event flowin, which starts the flow
in tank2, and vice versa.

The discrete state space of each tank is described with two variables: state and
flow. The state variable represents the condition of the tank to be empty, full, or half -
empty/full (either filling or emptying). The flow variable is a Boolean that represents if
there is or not an input flow of water. The continuous variables q, inq, outq represent
the quantity of water that is present in the tank, the incoming quantity and the outgoing
quantity, respectively.



MODULE main
VAR tank1: Tank(TRUE,2,1);

tank2: Tank(FALSE,2,1);
SYNC tank1,tank2

EVENTS flowin,noflowin;
SYNC tank1,tank2

EVENTS noflowin,flowin;

MODULE Tank(initial, maxin, minout)
EVENT flowin, noflowin, tau;
VAR state: {empty, half, full};

flow: boolean; inq: continuous;
q: continuous; outq: continuous;

INIT q=0 & (initial <-> flow)
INVAR q>=0 & q<=100 &

(state=empty -> q=0) &
(state=full -> q=100)

TRANS
(EVENT=flowin -> (next(flow)=TRUE &

next(state)=state))&
(EVENT=noflowin -> (state=full &

next(flow)=FALSE &
next(state)=state))&

(EVENT=tau -> (next(flow)=flow)) &
next(q)=q

FLOW
((state=empty & !flow) -> der(q)=0) &
(!(state=empty & !flow) ->

der(q)=der(inq)-der(outq));
FLOW
(!flow -> (der(inq)=0)) &
(flow -> (der(inq)>0 &

der(inq)<=maxin))&
der(outq)>=minout

Fig. 1. A small HYDI example.

Fig. 2. A possible execution of the tank1 process
in the tank example. The lower part shows the se-
quence of transitions and discrete states. In the up-
per part, the quantity q is plotted against time (the
dash line represents the quantity in the other tank).

Any transition satisfying the tran-
sition and invariant conditions is
valid. Therefore, the state variable can
change only with an internal tau event;
when q is 0 then it can pass from
half to empty and backwards, while
when q is 100 the state can pass from
half to full and backwards; when the
tank receives the event flowin the flow
variable becomes true; when the tank
is full, it triggers the event noflowin
switching the flow variable to false.
Note how the symbolic representation
allows a compact definition of dis-
crete states (there are implicitly six
discrete states in the example) and dis-
crete transitions (six in the example).

The derivative of q is always given
by the difference between the rate of
water flowing in and the rate of water
flowing out. The water flowing in the tank is zero if the flow variable is false, otherwise
it is positive and not greater than a maxin value that is passed as parameter to the tank
module. The rate of water flowing out is instead always greater than another parameter
named maxout.

Intuitively, the system performs discrete and continuous transitions. In the former
case, the variables evolve according to the invariant and transition conditions. In the lat-
ter case, the discrete variables do not change, while the continuous variables change ac-



cording to the invariant and flow conditions (with an implicit elapsing of time). For ex-
ample, Figure 2 shows a trace of tank1 that starts from the state empty with flow=TRUE
and q=0; then a tau transition changes the state into half ; then a timed transition makes
q reach the value 100 and another tau transition changes the state into full; in this state,
tank1 can synchronize with tank2 switching flow into FALSE. Now a tau transition
change the state to half, and another timed transition makes q reach the value 0. The
trace continues in this way oscillating the quantity q between 0 and 100.

Supported continuous dynamics HYCOMP supports different types of flow conditions.
Each type enables different kinds of verification. In particular, we distinguish among
the following classes of hybrid systems:

– Hybrid systems with linear constraints (see [26]), also known as linear hybrid au-
tomata, where the flow condition is given by symbolic constraints over the deriva-
tives of continuous variables.

– Hybrid systems with linear ODE (see [31, 22]), also known as linear hybrid systems
where the flow condition is defined by a system of linear Ordinary Differential
Equations (ODE).

– Hybrid systems with polynomial dynamics (see [20]): hybrid systems such that the
continuous evolution is described with a function over time, thus without using
derivatives.

In the first two cases, the flow condition is in the form φ(VD)→ ψ(VC , V̇C) where
φ(VD) is a formula over the discrete variables defining where the flow is valid, while
ψ(VC , V̇C) is a formula over the continuous variables and their derivatives defining the
actual dynamics. Both φ and ψ are restricted to linear arithmetic.

In the case of hybrid systems with linear constraints, ψ is a conjunction of equali-
ties or inequalities over derivatives only (thus, without occurrences of continuous vari-
ables). The tank example falls in this class. In the case of hybrid systems with linear
ODEs, ψ is a conjunction of equalities over both derivatives and continuous variables.
The case of hybrid systems with polynomial dynamics, are supported with another key-
word EXPLICIT_FLOW, which must be followed by an equality defining the next value
of a continuous variable after a timed transition as a polynomial of the delta variable
representing the elapsed time.

Supported synchronizations Synchronizations specify if two events of two processes
must happen at the same time. If two events are not synchronized, they interleave. Such
synchronization is quite standard in automata theory and process algebra. It has been
generalized with guards to restrict when the synchronization can happen.

Processes can share variables through the passage of parameters in the instantia-
tions. However, they are limited to read the variables of other processes. This permits
an easy identification of when the variables do not change even if the transitions are de-
scribed with a generic relation (compared to a more restrictive functional description).

In order to capture the semantics of some design languages, it is necessary to enrich
the synchronization with further constraints that specify a particular policy scheduling
the interaction of the processes. For this reason, it is possible to specify a scheduler in
the main module of the HYDI program in terms of state variables, initial and transition
conditions. These conditions may predicate over the events of the processes.
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3 Description of tool functionalities

3.1 Encodings

HYCOMP implements the encoding of a hybrid automata network into Infinite-state
Transition Systems (ITSs). The encoding process, shown in Figure 3, is constituted of
two main phases: the discretization and the interleaving encoding. The input of this
process is a HYDI program, while the resulting transition system can be exported into
the NUXMV format. If the input HYDI program is purely discrete, HYCOMP supports
an alternative flow in the encoding process, which can parse a discrete HYDI file into a
discrete asynchronous network of components, thus bypassing the discretization phase.
The discretization phase encodes the continuous variables, the flow and urgent condi-
tions of the hybrid automata network into a network of discrete ITSs. In the interleaving
encoding, the tool translates the interleaving of the transition systems of the network and
their synchronization constraints into a synchronous composition. We refer the reader
to [15, 34] for the formalizaion with proofs of correctness of the encoding process.

Discretization of a process The discretization phase translates each HYDI process Pc

into a discrete HYDI process Pd (a process with no continuous variables, no flow and
urgent conditions). Continuous variables are converted into discrete real variables and
an additional real variable delta is introduced to represent the amount of time elapsed in
the continuous transition. Moreover, Pc defines an additional event value timed, which
labels the discrete transition of Pc that encodes the continuous transition of Pd.

The definition of the timed transition ensures that all the discrete variables of Pc do
not change, that the amount of time elapsed is non-negative, and that the continuous
variables evolve according to the flow condition and the delta variable. The different
types of supported dynamics described in Section 2 are handled in different ways.

In the linear hybrid automata case, the predicate of the flow condition are a linear
combination of the first derivatives of the continuous variables (i.e.

∑
x∈X ẋ+ a ≤ 0).

The discretization encodes a linear combination as a formula Pd that relates the change
of values of the variables to the amount of time elapsed delta. For the tank example,
we have the following discretization:

TRANS (EVENT = timed) -> (
(delta=0 -> (next(q)=q & next(inq)=inq & next(outq)=outq)) &
((state=empty & !flow) -> next(q)=q) &
(!(state=empty & !flow) -> (

next(q)-q=next(inq)-inq-next(outq)+outq)) &
(!flow -> (next(inq)=inq)) &
(flow -> (next(inq)-inq > 0 & next(inq)-inq <= delta*maxin)) &
next(outq)-outq >= delta*minout)



In the linear hybrid automata we just encode the invariant condition of Pc as INVAR
in Pd. The encoding is correct due to the convexity of invariant conditions (that is
enforced in the HYDI syntax).

In the polynomial hybrid system case, the input model already defines an explicit
solution in function of delta. HYCOMP can also compute a polynomial explicit solu-
tion in delta for some linear hybrid systems. The capabilities of the tool are limited to a
very simple case, where the explicit solution can be obtained by substitution (e.g. given
ẋ = y, ẏ = 1 we can easily compute y(t) = t+ y(0) and x(t) = 1

2 t
2 + y(0)t+ x(0)).

Due to the possible non-linearity of the solution the invariant may be violated for some
value 0 < ε < delta, even if the invariant is convex and it holds on the interval points (0
and delta). For this reason, HYCOMP implements a specialized encoding [17], which
limits the duration of the timed transition in order to always observe the points where
the invariant changes its truth value.

For linear hybrid systems, HYCOMP implements the time-aware relational abstrac-
tion encoding of [33]. The idea of relational abstraction is to obtain a formulaR(X,X ′)
such that, if there is a trajectory from v to v′ in the linear system, then v, v′ is a model
for R(X,X ′). R(X,X ′) over-approximates the original hybrid system and thus the
resulting encoding can be used to prove safety properties.

The discretization process encodes the URGENT conditions that can be expressed
in HYDI. An URGENT condition is a formula U(V ), where V are discrete variables,
such that if U(V ) holds time cannot elapse. HYCOMP encodes the urgent condition as
TRANS U(V) -> delta = 0.

The discretization process can be controlled by two additional options. The first
option automatically adds a clock variable time that keeps track of the total amount of
time elapsed in the system. The variable may complicate some verification algorithms
(e.g. the BMC algorithm for LTL properties is completely unuseful when using this
encoding, since in the transition system there are no more infinite paths where the value
of the time diverges), but it may be necessary for other algorithms (e.g. the one based
on local-time semantic and K-zeno). The second option removes from the encoding the
possibility to have a path with two consecutive continuous transitions1. In this case the
encoding adds an additional Boolean variable b, which records if the last transition was
the time elapse (EVENT = timed -> next(b)) and forbids two consecutive time elapses
(EVENT = timed -> !b).

Discretization of the network HYCOMP can perform two different encodings of hybrid
automata networks, one based on global-time semantics and the other on local-time
semantics [4]. The global-time semantic captures the standard semantic of a network
of hybrid automata: time elapses in all the automata in the network and for the same
duration. Instead, in the local-time semantic each automaton keeps the total amount
of time elapsed in a local clock variable, which is incremented independently by each
automaton. In this way, time may elapse in one automaton but not in the others. The
encoding also forces that, when automata synchronize, they must also agree on the
value of their local time clocks. The same condition on clocks is also required at the
end of a run.

1 The option is not sound for the encoding of polynomial hybrid systems



Global-time and local-time semantic are encoded using synchronization constraints.
For the global-time semantic, HYCOMP adds a strong synchronization constraint be-
tween each pair of automata in the network. For the tank example, it would add the
following SYNC constraint:

SYNC tank1,tank2 EVENTS timed, timed
CONDITION tank1.delta = tank2.delta;

The CONDITION constraint must hold when there is the synchronization.
HYCOMP encodes the local-time semantic changing each synchronization condi-

tion and invariant property of the system. The encoding forces that the local time vari-
able of the automata must have the same value when there is a synchronization. In the
tank example, HYCOMP would create the following SYNC constraints:

SYNC tank1, tank2 EVENTS flowin, noflowin
CONDITION tank1.time = tank2.time;

SYNC tank1, tank2 EVENTS noflowin, flowin
CONDITION tank1.time = tank2.time;

The same condition about time has to be enforced also on INVARSPEC properties. HY-
COMP encodes each property INVARSPEC P as INVARSPEC S -> P, where S encodes the
equality of all the local time variables of the network processes.

Interleaving encoding In order to convert the asynchronous composition of the pro-
cesses into a synchronous composition, HYCOMP adds to each process an additional
event, stutter. This represents an additional transition where the process remains in the
same state while the other processes move.

Then, HYCOMP encodes the synchronization constraints as an additional global
TRANS constraints. The encoding of the first SYNC declaration of the tank example is:

TRANS tank1.EVENT = flowin <-> tank2.EVENT = noflowin

HYCOMP provides two additional options. The step semantic relaxes the interleav-
ing encoding allowing to execute in parallel several independent transitions. The other
option allows to generate an encoding partitioned by the values of the EVENT variable.

3.2 Verification

HYCOMP provides the possibility to verify different kinds of properties, namely in-
variants, LTL, and scenario specifications. These are based on different verification al-
gorithms, which work either directly on the network of asynchronous ITSs (scenario
verification, BMC using shallow synchronization) or on the synchronous transition sys-
tem (BMC, IC3, K-induction).

Invariant properties HYCOMP implements several algorithms to verify invariant prop-
erties. The property is expressed as a first-order formula over the state variables of the
hybrid automata network. The tool can either prove or falsify the property and, in the
latter case, construct a finite path that witnesses the violation.



HYCOMP verifies invariant properties by using several SMT-based algorithms im-
plemented in NUXMV: IC3, K-induction, their combination with implicit predicate ab-
straction [38, 13] and Bounded Model Checking (BMC). HYCOMP implements spe-
cialized BMC encodings for networks of hybrid automata: the tool implements a BMC
encoding that alternates continuous and discrete transitions [1] and the shallow syn-
chronization encoding [8], which exploits local-time semantic to obtain shorter coun-
terexample paths.

We note that all the verification algorithms are enabled when the encoding is ex-
pressed in Linear Real Arithmetic Theory. This is the case if the hybrid automaton is
linear or when using time-aware relational abstraction, but it is not the case for polyno-
mial hybrid systems. The limitation is due to the integration of an SMT solver support-
ing the Theory of Reals (i.e. support for polynomials), since the tool only provides an
experimental implementation of BMC that uses the Z3 or ISAT 2 SMT-solvers3.

LTL properties The tool allows the user to verify LTL properties interpreted over
discrete sequences of states. It implements a specialized algorithm, K-zeno [14], which
is based on a reduction of liveness to the reachability of an accepting condition and
excludes Zeno paths (unrealistic paths where time does not diverge) from the analysis.

HYCOMP allows the user to call the NUXMV BMC algorithms for LTL verifica-
tion to find a violation to the LTL property. However, in this case the Zeno paths of
the hybrid automata are excluded in the encoding of the hybrid automata network us-
ing a fairness condition (i.e. a condition that holds infinitely often) that enforces the
divergence of time. Note that the BMC algorithms will only find lasso-shaped paths.

Scenario specifications The last kind of specification verified by HYCOMP are sce-
narios: a scenario allows a user to specify the exchange of messages in a network of
hybrid automata. The scenario specifications supported by HYCOMP are a variant of
Message Sequence Charts (MSC). For all the automata in the network, an MSC defines
a sequence of events (i.e. labels of the automata) and constraints evaluated when an
event happens (e.g. the system must execute an event within a given amount of time).
The MSC is feasible if there exists a path in the hybrid automata network that simulates
it and that also satisfies the MSC constraints. Otherwise, the MSC is unfeasible.

HYCOMP implements two different approaches to verify scenario specifications. In
one approach, the tool reduces the problem of scenario verification to a reachability
problem, using an automaton to monitor the MSC feasibility. The other approach [16]
exploits local-time semantic and consists of a specialized BMC encoding of the prob-
lem. The approach may either find a witness of feasibility or prove that a scenario is not
feasible, using a variant of K-induction.

3.3 Parameter Synthesis

The tool allows the user to synthesize the set of parameter values of the system that
guarantee its safe behavior. For example, the tool may be used to automatically syn-

2 http://z3.codeplex.com, http://projects.avacs.org/projects/isat
3 HYCOMP does not link or distribute Z3 or ISAT, which should be installed by the end user
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thesize timeout values or deadlines that the system must guarantee (e.g. the maximum
timeout to send a packet in a communication protocol).

In our framework, parameters are specified as FROZENVAR (a variable that never
change its value during the system execution) and the safe behavior as an invariant
property. The tool returns a formula of the parameters that represents the (possibly non-
convex) feasible region of parameters.

HYCOMP uses the parameter synthesis algorithm implemented in NUXMV [12].

4 Tool architecture and implementation details

4.1 Architecture

In Figure 4 we show the architecture of the tool. HYCOMP uses as libraries the model
checkers NUSMV and NUXMV [9] and the MathSAT [18] SMT solver.

HYCOMP uses several data structures and functions from NUSMV: its formula
representation and manipulation package, its type system, its functions for flattening of
hierarchical modules and its representation of transition systems.

HYCOMP uses the SMT-based algorithms implemented in NUXMV (e.g. IC3, K-
induction, BMC, parameter synthesis) and also the NUXMV front-end to MathSAT.
The front-end exposes the MathSAT functionalities (satisfiability check, incremental
interface, extraction of unsat cores and interpolants), provides an automatic declaration
of the variables in the solver and an automatic conversion from different formula rep-
resentations (NUXMV and MathSAT representations). Finally HYCOMP also uses the
linear algebra library LAPACKE4 for the computation of relational abstractions.

The internal architecture of the tool is represented in the upper part of Figure 4. The
tool is divided in packages that clearly separate different functionalities. The parser
package is used to parse and type check a HYDI file. The results of this phase is a
network of hybrid automata. The data structures that represent networks of hybrid au-
tomata and of transition systems are defined in the network package. All the encod-
ing process is contained in the translate package, which also provides the functions to
discretize continuous dynamics. Different representations of a continuous system and
functions used to manipulate them are defined in the dynamics package. The verification
algorithms for LTL verification is implemented in the ltl package, while the specialized
BMC algorithms are implemented in the bmc package. Finally, the package scenario

4 http://www.netlib.org/lapack/



implements the scenario verification algorithms and the cmd package provides the user
commands that directly call the NUXMV algorithms (e.g. IC3, parameter synthesis).

4.2 Implementation Details

Network representation HYCOMP represents asynchronous network of processes, which
can be either hybrid automata or transition systems. The data structure is agnostic of
the process type and provides common functionalities to represent and manipulate syn-
chronization constraints. One of these is the computation of the transitive closure of
synchronizations (in HYDI, if there is a synchronization between the event a of p1 and
the event b of p2, and another synchronization between the event b of p2 and the event c
of p3, then there is an implicit synchronization between a of p1 and c of p3). HYCOMP
represents the graph of synchronizations, where nodes are processes and undirected
edges are synchronizations, and computes its transitive closure.

Mapback of results While the user is aware of the existence of the various encoding
phases, the tool hides all the artifacts of the encoding. This is important to avoid misun-
derstanding and allows for modifying the encoding in the future. The encoding phases
keep a map from a symbol in the source model to its correspondent symbol in the en-
coding (e.g. a continuous variable is mapped to the real variable used in the discrete
encoding). Since we have several transformations (discretization and encoding of inter-
leaving) we have several maps, which can be composed and inverted, to map the results
obtained during verification (e.g. counterexample paths) to the original model.

Symbolic enumeration of discrete locations The discretization in the case of linear
hybrid systems requires to reason on a system of ODEs. Since the input is symbolic,
HYCOMP has to enumerate the set of discrete locations and, for each one of them,
compute the correspondent system of ODEs. For example, consider the following FLOW:

FLOW der(x) = x & (b -> der(y) = 1) & (!b -> der(y) = 0);

If b is true, then the linear system is der(x) = x & der(y) = 1, otherwise we have
der(x) = x & der(y) = 0. HYCOMP enumerates all the possible disjoint subsets of
discrete locations using MathSAT. The idea is to use an additional Boolean variable
for each discrete condition in the flow declarations (e.g. the variable f0 for TRUE, f1
for b and f2 for !b), encoding that the variable is true if and only if the condition is
true (e.g. f0 <-> TRUE && f1 <-> b && f2 <-> !b). Then, MathSAT enumerates all
the possible satisfying partial models formed by the Boolean variables (in the example
they are f0 & f1 & !f2 and f0 & !f1 & f2). Each partial model identifies a symbolic
discrete location where the FLOW is a system of ODEs.

5 Experimental evaluation

We show an experimental comparison on the verification of invariant properties on
timed and linear hybrid automata. This comparison is novel and complements the com-
parisons for LTL, scenario verification, and parameter synthesis presented in previous
papers [14, 16, 12].



IC3-IA IC3-IA-ALT UPPAAL UPPAAL-RED
#p time #p time #p time #p time

Csma-cd 12 2608.94 14 258.22 6 18.50 6 251.96
Fischer 8 1466 14 476.88 11 312.48 11 401.67
FischerSAL 6 258.15 5 463.92 11 356.49 11 451.35
HDDI 14 220.77 14 224.55 14 2.21 14 3.07
Lynch-Mahata 8 1710.81 6 494.12 11 416.69 11 534.05
All instances 48 6265 53 1918 53 1106 53 1642

Fig. 5. Results on mutual exclusion properties.
#p is the total number of instances solved and
time the time in seconds took to solve them.
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Fig. 6. Cumulative plot on mutex proper-
ties

The main goal of the experimental evaluation is to position the tool with respect to
the existing state of the art and not to evaluate the algorithms. For the latter goal, one
would need more benchmarks and properties.

All the experiments have been performed on a cluster of 64-bit Linux machines with
a 2.7 Ghz Intel Xeon X5650 CPU, with a memory limit of 4Gb and a time limit of 900
seconds. The HYCOMP tool and the benchmarks used in the experiments are available
at https://es.fbk.eu/people/mover/tests/tacas15hycomp.tar.bz2.

5.1 Timed automata

We compared HYCOMP with UPPAAL [5] on timed automata benchmarks obtained ei-
ther from the UPPAAL or the MCMT [23] distributions, converting the benchmark in
the HYDI language. We selected the following benchmarks: the Fischer protocol, one
of its variant, FischerSAL, the Csma-cd protocol, the HDDI protocol and the Lynch-
Mahata protocol. For each benchmark we checked the mutual exclusion property and
we generated several invariant properties, which specify that a specific configuration of
locations in the network is not reachable. We generated several instances of the bench-
marks increasing the number of processes.

For HYCOMP, we run IC3 with implicit predicate abstraction (IC3-IA), the BMC
implementation that alternates timed and discrete transitions (BMC) and IC3 on the
encoding that avoids two consecutive timed transition (IC3-IA-ALT). In all the cases,
we used the global-time semantic. For UPPAAL, we used two different configurations5:
in the first one (UPPAAL) we used Different Bounded Matrices representation, while in
the second one (UPPAAL-RED) we used the minimal constraint systems representation.

In Figure 6 and Table 5 we show the comparison on the mutual exclusion properties.
We see that UPPAAL is generally faster than IC3-IA-ALT and IC3-IA. In detail, IC3-IA
and IC3-IA-ALT outperform UPPAAL on two benchmarks, while they are worse on
the other three: there are several instances that can be solved by UPPAAL and not by
HYCOMP and vice-versa.

In Figure 7 we show the results verifying the automatically generated properties.
UPPAAL solves more instances (325 in 14581 sec.) than IC3-IA-ALT (290 in 4776 sec).

5 In both cases we used the version 4.0.14 of UPPAAL with the options “-n 0, -o 0, -s 1”
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Fig. 7. Cumulative plot on the automatically generated properties

IC3-IA IC3-IA-ALT SPACEEX
#p time #p time #p time

Distributed Controller 14 402.56 14 451.08 1 0.69
Fischer 5 905.82 5 558.49 3 74.73
Nuclear Reactor 14 783.02, 14 96.67 1 26.99
Navigation safe 28 1823.25 28 1768.78 28 43.76
Navigation-double safe 17 3213.59 16 3198.29 13 1599.16
Navigation unsafe 28 3280.17 28 4525.07 28 43.74
Navigation-double unsafe 17 4722.68 13 2438.36 14 2496.69
All instances 123 15131 118 13037 46 1745

Fig. 8. Results on LHA benchmarks. #p is the total
number of instances solved and time the time in sec-
onds took to solve them.
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benchmarks

If we focus on unsafe properties, we see that IC3-IA (155 in 983 sec.) and IC3-IA-ALT
(149 in 2274 sec.) are more effective than UPPAAL (146 in 3426 sec.).

5.2 Linear Hybrid Automata

We compared HYCOMP and SPACEEX [22] on the verification of invariant properties of
the following linear hybrid automata benchmarks: an LHA version of the Fischer pro-
tocol [2], the control of nuclear reactor of [39] (Nuclear Reactor), the model of a robot
controller [25] (Distributed Controller) and two LHA variants (Navigation, Navigation-
double) of the navigation benchmark [19]. Navigation models describe the movement
of an object in an nxn grid of square cells, which will eventually reach a stable region.
Navigation-double is a variant with two grids and two objects.

For all the benchmarks, except the navigation ones, we checked a mutual exclusion
property and we generated several instances increasing the number of components in
the network. For Navigation and Navigation-double, we increased the number of cells
in the grid and considered a safe and an unsafe property (the object is in the stability
region after or before a given time).

For HYCOMP, we run IC3-IA and IC3-IA-ALT , while for SPACEEX we used the
phaver scenario. We show the results of the comparison in Figure 9 and Table 8.



6 Conclusion

We presented HYCOMP, an SMT-based model checker for hybrid systems. The tool fea-
tures an expressive input language and a rich set of functionalities, such as verification
of invariant and LTL properties, verification of scenario specifications and parameter
synthesis. We demonstrated the potential of the tool, showing its competitiveness with
the state of the art.

We plan to develop HYCOMP in several directions, adding algorithms for abstraction-
refinement in presence of complex dynamics, integrating more expressive specifications
such as HRELTL and improving the underlying SMT-based verification algorithms. We
also have plans to integrate HYCOMP in analysis tools for safety assessment (XSAP [7])
and contract-based design (OCRA [11]).
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22. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: CAV. pp. 379–
395 (2011)

23. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: IJCAR. pp. 22–29
(2010)

24. Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: A Model Checker for Hybrid Systems.
STTT 1(1-2), 110–122 (1997)

25. Henzinger, T.A., Ho, P.H.: Hytech: The cornell hybrid technology tool. In: Hybrid Systems.
pp. 265–293 (1994)

26. Henzinger, T.A.: The theory of hybrid automata. In: LICS. pp. 278–292 (1996)
27. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks.

In: FMOODS/FORTE. pp. 18–34 (2012)
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