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Abstract Hybrid systems are a clean modeling framework for embedded systems,
which feature integrated discrete and continuous dynamics. A well-known source
of complexity comes from the time invariants, which represent an implicit quan-
tification of a constraint over all time points of a continuous transition.

Emerging techniques based on Satisfiability Modulo Theory (SMT) have been
found promising for the verification and validation of hybrid systems because they
combine discrete reasoning with solvers for first-order theories. However, these
techniques are efficient for quantifier-free theories and the current approaches have
so far either ignored time invariants or have been limited to hybrid systems with
linear constraints.

In this paper, we propose a new method that encodes a class of hybrid systems
into transition systems with quantifier-free formulas. The method does not rely
on expensive quantifier elimination procedures. Rather, it exploits the sequential
nature of the transition system to split the continuous evolution enforcing the
invariants on the discrete time points. This way, we can encode all hybrid systems
whose invariants can be expressed in terms of polynomial constraints. This pushes
the application of SMT-based techniques beyond the standard linear case.

1 Introduction

Embedded systems (e.g. control systems for railways, avionics, and space) feature
the interaction of discrete systems with the environment by means of controlled
and monitored variables that evolve continuously in time. The validation and
verification of embedded systems designs must often take into account a model of
the continuous evolution of such variables. Hybrid systems [3] are a clean modeling
framework for embedded systems because they exhibit both continuous transitions
ruled by flow conditions and discrete changes represented with logical formulas.
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A fundamental step in the design of these systems is the validation and ver-
ification of the models, performed by checking properties such as invariants or
reachability. In spite of the undecidability of these problems, several verification
techniques have been developed and have proved to be applicable in a wide num-
ber of cases. Among these techniques, common approaches are the computation
of the reachable states, and the use of abstraction or deduction systems (see [2]
for a recent survey).

An emerging approach to the verification of hybrid systems is the application
of verification techniques based on SMT [6]. The hybrid system is encoded into
a symbolic transition system and reachability problems are represented by means
of first-order formulas. The encoding allows the application of general-purpose
SAT-based verification techniques such as Bounded Model Checking (BMC) [7],
interpolation-based model checking [31], k-induction [38], and predicate abstrac-
tion [24], and combination thereof [40]. Examples of such SMT-based approaches
are [5,1,28,26,20,29,21,27]. Specific techniques have also been proposed for net-
works of hybrid systems [10,13,15], and for requirements [17]. Also thanks to the
strong progress in the field of SMT, these approaches are increasingly applied in
real settings (e.g. the design of complex space systems [8,9,41]).

A well-known problem of this approach is the encoding of invariants. In or-
der to preserve the semantics of the hybrid system, the formula representing a
continuous (timed) transition between two time points t and t′ must guarantee
that the invariant holds along all points of the implicit continuous evolution be-
tween the state s(t) and the state s(t′). A straightforward approach would create a
quantified formula which treats the invariant as a formula Inv(t) over the variable
representing real time and quantifies the formula along all time points of the timed
transition, i.e., ∀ε ∈ [t, t′], Inv(ε). In general, it is an open question how to handle
such quantifiers (see for example [1,21]): the elimination of quantifiers is in gen-
eral not possible, and when the elimination is theoretically possible (such as in the
case of the theory of reals, i.e., polynomial constraints) it is in practice not feasible
beyond the quadratic case. Only in particular cases (such as when the continuous
evolution of variables is expressed as a linear function of time, and Inv is convex),
the encoding is equivalent to the quantifier-free formula Inv(t) ∧ Inv(t′).

In this paper, we propose a new approach to efficiently encode invariants as
quantifier-free formulas. Intuitively, the encoding can be thought of as general-
izing the linear case, forcing the invariant before and after the timed transition
(Inv(t) ∧ Inv(t′)), and imposing the derivative of the invariant to be constant in
sign throughout the timed transition. This reduces the invariant to a quantified
formula over the derivatives of the continuous variables. Applying these reductions
recursively, in some cases, one may obtain a quantifier-free encoding. In particular,
we prove that this holds for hybrid systems with polynomial dynamics, where the
continuous evolution is explicitly expressed by polynomial functions of time, since
the derivatives eventually reduce to zero. Then, we provide a quantifier-free encod-
ing for two different classes of hybrid systems with linear ODEs, via a reduction
to the polynomial dynamics case. Finally, we show that it is possible to obtain
a quantifier-free encoding also in interesting non-linear cases of hybrid automata
with transcendental dynamics. Overall, a key contribution of the paper is to enable
the application of SMT-based verification techniques to a broader class of hybrid
systems.
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The approach has been implemented and evaluated on a set of benchmarks.
The results show that the SMT solvers for non-linear arithmetic are still not able
to handle large problems. However, the proposed technique allows us to solve
problems where an abstraction that simply ignores the invariants is too coarse to
guarantee soundness and completeness. Moreover, the results of the paper should
stimulate new research in the field.

The rest of this paper is structured as follows. In Sec. 2 we present some
background on symbolic transition and hybrid systems. In Sec. 3, we show how to
reduce the encoding problem to the case where the invariants contain only atomic
formulas, removing disjunctions from the universally quantified formulas. In Sec. 4,
we show how to encode the (implicitly quantified) invariants into quantifier-free
formulas. In Sec. 5, we present the encoding of hybrid systems with polynomial
dynamics. In Sec. 6, we show how to handle two classes of hybrid systems with
linear ODE. A comparison with related work is described in Sec. 7, whilst the
experimental evaluation is presented in Sec. 8. In Sec. 9 we draw some conclusions,
and outline directions for future work.

2 Background

2.1 First-order Transition Systems

Given a set V of variables, we denote with V ′, V̇ , V 0, V 1, . . . copies of such set.
Given a first-order signature Σ, a first-order Σ-Transition System (TS) is a tuple
S = 〈V, Init, Inv, Trans〉 such that:

– V is a set of variables;
– Init is a first-order Σ-formula over V (called initial condition);
– Inv is a first-order Σ-formula over V (called invariant condition);
– Trans is a first-order Σ-formula over V ∪ V ′ (called transition condition).

Let ΣR be the standard signature of the real ordered field. In the following, we
will consider signatures Σ that are extensions of ΣR, the structure R of the real
ordered field extended with transcendental functions such as the exponential and
the trigonometric functions, and formulas will be interpreted in an appropriate
extension of the first-order theory of the real numbers for such structure R.

A state s is an assignment to the variables V . We denote with s′, ṡ, s0, s1, . . .
the corresponding assignment to the copy V ′, V̇ , V 0, V 1, . . . of V .

A sequence s0, s1, . . . , sk of states is a model (also called path) of the transition
system S = 〈V, Init, Inv, Trans〉 iff:

– s0 satisfies Init;
– for every 0 ≤ i ≤ k, si satisfies Inv;
– for every 0 ≤ i < k, si, s

′
i+1 satisfy Trans.

2.2 Hybrid traces

We denote with ḟ the first derivative of a real function f . Let I be an interval
of R or N; we denote with le(I) and ue(I) the lower and upper endpoints of I,
respectively.
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Hybrid traces [18,17] describe the evolution of variables in every point of time.
Such evolution is allowed to have a countable number of discontinuous points
corresponding to changes in the discrete part of the model.

A hybrid trace over discrete variables V and continuous variables X is a sequence
〈f, I〉 := 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 such that, for all i, 0 ≤ i ≤ k,

– the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);
– le(I0) = 0 and Ik is right closed;
– fi : V ∪X → R→ R is a function such that, for all x ∈ X, fi(x) is differentiable,

and for all v ∈ V , fi(v) is constant;
– if Ii is left open [right open] and le(Ii) = t [ue(Ii) = t] then, for all v ∈ V ∪X,
fi(v)(t) = fi−1(v)(t), [fi(v)(t) = fi+1(v)(t)].

We say that a trace is a sampling refinement of another one if it has been
obtained by splitting an open interval into two parts by adding a sampling point
in the middle [18]. A partitioning function µ is a sequence µ0, µ1, µ2, . . . of non-
empty, adjacent and disjoint intervals of N partitioning N. Formally,

⋃
i∈N µi = N

and ue(µi) = le(µi+1)− 1. A hybrid trace 〈f ′, I ′〉 is a sampling refinement of 〈f, I〉
(denoted with 〈f ′, I ′〉 � 〈f, I〉) iff, there exists a partitioning µ such that for all
i ∈ N, Ii =

⋃
j∈µi I

′
j and, for all j ∈ µj , f ′j = fi. We extend the relation to set L1

and L2 of traces as follows: L1 � L2 iff for every trace σ2 ∈ L2 there exists σ1 ∈ L1

such that σ1 � σ2.
We assume that the evolution of predicates along time have the finite variability

property: we say that a predicate P (t) over a real variable t has finite variability [36]
iff for any bounded interval J there exists a finite sequence of real numbers t0 <
. . . < tn such that t0 = le(J), tn = ue(J), and for all i ∈ [1, n], either for all
ε ∈ (ti−1, ti), P (ε) or for all ε ∈ (ti−1, ti), ¬P (ε). The last condition means that the
predicate is constant in the interval (ti−1, ti). If P is in the form g(t) ./ 0 with g

continuous and ./∈ {≥,≤, <,>}, in the points in which P changes value, g(t) = 0.
Thus, g ./ 0 has finite variability iff for any bounded interval J there exists a finite
sequence of real numbers t0 < . . . < tn such that t0 = le(J), tn = ue(J), and for
all i ∈ [1, n], either for all ε ∈ [ti−1, ti], g(ε) ≥ 0 or for all ε ∈ [ti−1, ti], g(ε) ≤ 0. We
denote this condition with Constant(P, ti−1, ti).

Proposition 1 Assuming that a predicate P has finite variability, for every hybrid

trace σ, there exists a sampling refinement of σ for which which P is constant in the

open part of every interval.

2.3 Hybrid systems

Hybrid systems [3] extend transition systems with continuous dynamics. A Hybrid

System (HS) is a tuple 〈V,X, Init, T rans, Inv, F low〉 where:

– V is the set of discrete variables,
– X is the set of continuous variables,
– Init is a ΣR-formula over V ∪X (called the initial condition);
– Inv is a ΣR-formula over V ∪X (called the invariant condition).
– Trans is a ΣR-formula over V ∪X ∪ V ′ ∪X ′ (called the transition condition);
– Flow is a ΣR-formula over V ∪X ∪ Ẋ (called the flow condition).
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Given a hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉, we denote with sfi(t) the
state assigning to every variable v ∈ V ∪X the value fi(v)(t) and with ṡfi(t) the

assignment that maps every variable v ∈ X with the value ḟi(v)(t).
A hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a model (also called path) of the

HS S = 〈V,X, Init, Inv, Trans, F low〉 iff:

– sf0(0) satisfies Init;
– for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t) satisfies Inv;
– for every 0 ≤ i < k, if Ii is right closed with ue(Ii) = t and Ii+1 is left closed

with le(Ii+1) = t′, then sfi(t), s
′
fi+1

(t′) satisfies Trans;
– for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t), ṡfi(t) satisfy Flow.

The language L(S) is the set of models of S.

Proposition 2 A sampling refinement of a path of an HS S is also a path of S.

Intuitively, sampling refinement just splits an interval into sub-intervals and
therefore does not change either the initial state or the discrete transitions. Thus,
the conditions remain satisfied by the corresponding points.

Sampling refinement preserves reachability properties in the sense that if L′ �
L(S) then there exists a trace in L′ reaching a condition φ iff there exists a trace
in L(S) reaching φ (similarly for LTL properties without next operators [18] and
HRELTL properties [17]).

Remark 1 In the above definition, the flow conditions are general predicates over
the derivatives of X. In the following, we are considering HSs with continuous
dynamics described by ODEs in form Ẋ = F (X) (i.e., for all x ∈ X, ẋ = Fx(X)).
Then, we assume that the system of ODEs admits a primitive solution f(V, t),
which is uniquely determined by the state at the beginning of the timed transition.

Remark 2 We clarify the nomenclature used in this paper when referring to the
different kinds of hybrid systems that we considered.

– Hybrid systems with linear (or non-linear) constraints (see, e.g., [3,25]): linear
and non-linear hybrid automata, where the flow condition is given by symbolic
constraints over the derivatives of continuous variables.

– Hybrid systems with linear (or non-linear) ODE (see, e.g., [4,?,39,23]): fol-
lowing the literature on control theory, linear and non-linear hybrid systems
where the flow condition is defined by a system of linear or non-linear Ordinary
Differential Equations (ODE).

– Hybrid systems with polynomial (or non-linear) dynamics (see, e.g., [22,12,
34]): hybrid systems such that the continuous evolution is described with a
function of time, thus without using derivatives.

Our definition of hybrid systems is general enough to cover the first two cases.
However, our results also applies to the third case, as such dynamics provide the
explicit solution for a system of ODEs, as we require.

2.4 Encoding of hybrid into transition systems

In this section, we show a standard encoding of HSs into a transition system with
formulas over the reals. In general, for encoding, we mean a transition system
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that preserves the properties of interest. In this paper, we say that the transition
system is an encoding of a HS if it represents its language or a sampling refinement
thereof (thus preserving for example reachability).

In this encoding, we assume that the system of ODEs admits a primitive so-
lution f(V, t), which is uniquely determined by the state at the beginning of the
timed transition. Moreover, we assume that the time intervals of the hybrid traces
satisfying the HSs are all in the form either [t1, t2) (i.e., left closed, right open)
or [t1, t1] (i.e., singular intervals). This simplifies the encoding but a more general
encoding is possible (see for example [17]). Note also that the restriction does
not affect the validity of Proposition 1, which regards only the open parts of the
intervals.

Theorem 1 Given a HS S, there exists a TS SD such that there exists a one-to-one

mapping between the paths of S and the paths of SD.

From now on, we will call SD the encoding of S.

Proof (Sketched proof) We encode a HS S in the TS
SD = 〈VD, InitD, InvD, T ransD〉 where:

– VD := V ∪X ∪ {t}
(t is a real variable that stores the current real time of the system).

– InitD := t = 0 ∧ Init.
– InvD := Inv

(note that this does not guarantee that the invariants of S hold for the entire
duration of a continuous transition. This is taken into account in TransD).

– TransD := Timed ∨Untimed where
– Timed := t′ > t ∧ V ′ = V ∧X ′ = f(V ∪X, t′) ∧ ∀ε ∈ [t, t′], Inv(V, f(ε))
– Untimed := t′ = t ∧ Trans(V,X, V ′, X ′).

Let the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 be a path of S. Then, the
sequence of states f0(le(I0)), f1(le(I1)), . . . , fk(le(Ik)) is a path of SD.

Let the sequence s0, s1, . . . , sk be a path of SD. Let us consider, for all i ∈ [1, k],
fi(v)(t) = f(si, t)(v). Let us define Ii := [si(t), si+1(t)) if i < k and si+1(t) > si(t),
Ii := [si(t), si(t)] if i < k and si+1(t) = si(t) or if i = k. Then, the hybrid trace
〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of S.

Remark 3 Notice that the timed transition involves a quantified sub-formula to
encode that the invariant holds along each instant of the continuous evolution.
This is an issue for using standard SMT solvers which typically handle quantifier-
free formulas or are not complete for quantifiers (even if the full theory with
quantifiers is theoretically decidable). When the primitive solution is known and
is expressed in the theory of reals (a polynomial), the quantifier can be removed
to yield an equivalent quantifier-free encoding. However, in practice, this solution
is not feasible beyond the quadratic case.

Remark 4 In the formula ∀ε ∈ [t, t′], Inv(V, f(ε)) representing the invariant during
the timed transition, the quantifier ranges over the closed interval [t, t′]. However,
since Inv is also forced by the invariant of SD, we can safely replace the interval
with its open version (t, t′) obtaining an equivalent transition system (with the
very same paths). The timed transition in this variant would be:
Timed′ := t′ > t ∧ V ′ = V ∧X ′ = f(V ∪X, t′) ∧ ∀ε ∈ (t, t′), Inv(V, f(ε))
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This will be useful when dealing with disjunctive invariants. In the following,
we will clarify which encoding we are considering.

Remark 5 It is usually very useful to strictly alternate timed and discrete transi-
tions to simplify the encoding and improve the search (see e.g. [1]). The encoding of
Theorem 1 does not force such alternation, to enable other forms of simplification.
In the following, we will clarify when we use alternation.

3 Removing quantified disjunctions from the invariants

In this section we describe how to remove disjunctions from the invariants, ob-
taining an equivalent encoding where the quantified formulas contain only atomic
predicates. The transformation relies on the encoding of hybrid systems with quan-
tifiers over open intervals (see Remark 4). Then, in the next Section we will show
how to remove the quantifiers in both the open and the closed intervals case.
Note that the existing encodings of hybrid automata into infinite-state transition
systems ignore the issue and assume the convexity of the invariant condition.

We reduce the quantification over a disjunctive invariant into a disjunction
of quantifications. While this is not correct in general, it is possible due to the
particular position of the quantified sub-formula in the transition condition. After
the reduction we guarantee that the quantified formula in Trans is atomic, allowing
us to remove the quantifiers.

Suppose we have a disjuntive invariant φ(ε)∨ψ(ε). In our case we can distribute
the universal quantifier in ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε) over the disjunction, obtaining
the formula ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε). The following theorem proves the
correctness of the transformation.

Theorem 2 Assuming that the predicates φ and ψ have finite variability, if we replace

a formula ∀ε ∈ (t, t′), φ(ε)∨ψ(ε) with ∀ε ∈ (t, t′), φ(ε)∨∀ε ∈ (t, t′), ψ(ε) inside TransD,

we obtain the encoding of a sampling refinement to the original HS.

Proof Clearly, ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε) implies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε).
The opposite does not hold in general. However, consider a hybrid trace 〈f, I〉 :=
〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of a HS S. Assuming that the predicates
φ and ψ have finite variability, we can refine the hybrid trace into a new hybrid
trace 〈f ′, I ′〉′ := 〈f ′0, I;0〉, 〈f ′1, I ′1〉, . . . , 〈f ′l , I

′
l〉 in which φ and ψ are constant in every

interval. The new hybrid trace also satisfies S by Proposition 2 and thus the
corresponding discrete trace s0, . . . , sl satisfies its encoding S′D. At every i, if si
satisfies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε), then f(si, ε) satisfies φ ∨ ψ for all ε ∈ (t, t′) =
(le(I ′i), ue(I

′
i)), and thus either φ or ψ (since φ and ψ are constant in the open part

of I ′i). Therefore the discrete trace satisfies also the encoding with ∀ε ∈ (t, t′), φ(ε)∨
∀ε ∈ (t, t′), ψ(ε).

The effect of the encoding on the paths of the transition system is shown in
Figure 1. In practice, the encoding of the transition system without disjunctions
splits the continuous transition every time the valuation of φ or ψ changes, instead
of allowing a single continuous transition where φ ∨ ψ holds.
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t = t0 t0 . . . tn−1 tn = t′φ ψ φ ψ

φ ∨ ψ

Fig. 1 Effect on a path of the encoding without disjunctions.

4 Removing quantifiers from the invariants

4.1 Reduction to flow invariants

In this section we present the main theorem of the paper. The goal of the theorem
is to reduce the quantified formula of an invariant to a quantified formula over its
derivatives. In some cases, this simplifies the quantified formula.

The following theorems assume the finite variability of predicates of the deriva-
tives. Many functions have this property, in particular polynomials and some sim-
ple transcendental functions.

Theorem 3 If g : R→ R is a differentiable function and ġ ./ 0 (./∈ {≥, >,≤, <}) has

finite variability, then ∀ε ∈ [t, t′], g(ε) ./ 0 iff there exists a finite sequence of real num-

bers t = t0 < . . . < tn = t′ such that
∧

0≤i≤n g(ti) ./ 0∧
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti).

Proof Let us assume that ./∈ {≥, >}.
(⇒) Since ġ ./ 0 has finite variability, there exists a finite sequence of real

numbers t0 = t < . . . < tn = t′ such that
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) by

definition. Moreover, since ∀ε ∈ [t, t′], g(ε) ./ 0, g ./ 0 holds also in the time points
t0, . . . , tn.

(⇐) Assume by contradiction that there exists tb ∈ [t, t′] such that g(tb) ./ 0 is
false. Since

∧
0≤i≤n g(ti) ./ 0, there exists i ∈ [1, n] such that tb ∈ (ti−1, ti). Since

g is differentiable, by the mean value theorem, there exists a point t′b ∈ (ti−1, tb)

such that ġ(t′b) = g(tb)−g(ti−1)
(tb−ti−1)

and therefore ġ(t′b) < 0. Similarly, there exists a

point t′′b ∈ (tb, ti) such that ġ(t′′b ) = g(ti)−g(tb)
(ti−tb) and therefore ġ(t′′b ) > 0. Thus,

ġ is not constant over (ti−1, ti) contradicting the hypothesis. We conclude that
∀ε ∈ [t, t′], g(ε) ./ 0.

The cases in which ./∈ {≤, <} can be proved similarly.

The intuition behind the theorem is simple. While we can easily encode that
the invariant holds at some precise point (e.g. t, t′) it is harder to impose the same
condition along an interval without the use of quantifiers. However, we exploit the
sign of ġ to infer the behavior of g in [t, t′] (i.e. if ġ > 0, resp. ġ < 0, resp. ġ = 0,
then g increases, resp. decreases, resp. is constant). Since g is finite variable, we
can divide the interval [t, t′] in a finite sequence of intervals where the sign of
the derivative is constant. If the invariant does not hold in all the endpoints of
the intervals, then there exists a point in [t, t′] where the invariant does not hold.
Otherwise, by the fact that the sign of the derivative is constant we know that g
just increases, decreases or is constant in the interval. Thus, the valuation of g ./ 0
does not change in the interval.
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ġ(t) > 0 ġ(t) < 0 ġ(t) < 0

t

g(t)
g(t)

Fig. 2 Plot of the function t3 − 3t. The plot is grey if ġ(t) > 0 and white when ġ(t) < 0.

Example 1 Consider the function g(t) = t3 − 3t in the interval [−2, 2] (it is plot-
ted in Figure 2) and the invariant g(t) ≥ 0. The derivative ġ(t) < 0 in [−2,−1)
and (1, 2], ġ(t) > 0 in (−1,−1), ġ(t) = 0 in [−1,−1] and [1, 1]. Now consider
the formula ∀ε ∈ [−2, 0], g(ε) ≥ 0. We remove the quantifier considering the in-
tervals where the derivative is constant: g(−2) ≥ 0 ∧ g(−1) ≥ 0 ∧ g(0) ≥ 0 ∧
Constant(ġ ≥ 0,−2,−1)Constant(ġ ≥ 0,−1, 0). Note that in practice we do not fix
the intervals where the derivative is constant, but they will be found automatically
by the SMT solver.

When the predicate is an equality, the reduction is simpler.

Corollary 1 If g : R→ R is a differentiable function and ġ = 0 has finite variability,

then ∀ε ∈ [t, t′], g(ε) = 0 iff g(t) = 0 ∧ g(t′) = 0 ∧ ∀ε ∈ [t, t′], ġ(ε) = 0.

The quantifier can be removed even if the interval of quantification is open.

Theorem 4 If g : R → R is a differentiable function and ġ ./ 0 (./∈ {≥, >}) has

finite variability, then ∀ε ∈ (t, t′), g ./ 0 iff there exists a finite set of real num-

bers t = t0 < . . . < tn = t′ such that g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧
∧

0<i<n g(ti) ./

0 ∧
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) if ./=≥, g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧
∧

0<i<n g(ti) ./

0∧
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti)∧ (g(t) = 0→ ġ(t) > 0)∧ (g(t′) = 0→ ġ(t) < 0),

if ./=>.

Proof (⇒) Since ġ ./ 0 has finite variability, there exists a finite set of real numbers
t = t0 < . . . < tn = t′ such that

∧
0<i≤n Constant(ġ ≥ 0, ti−1, ti) by definition.

Moreover, since ∀ε ∈ (t, t′), g ./ 0, g ./ 0 holds also in the time points t1, . . . , tn−1.
g(t) ≥ 0 and g(t′) ≥ 0 for the continuity of g. Finally, (g(t) = 0→ ġ(t) > 0)∧(g(t′) =
0→ ġ(t) < 0), if ./=>.

(⇐) Assume by contradiction that there exists tb ∈ (t, t′) such that g(tb) ./ 0
is false. Since

∧
0<i<n g(ti) ./ 0, there exists i ∈ [1, n] such that tb ∈ (ti−1, ti).

Let us consider first the cases in which ./=≥ or i ∈ [2, n−1] or i = 1 and g(t) ./ 0
or i = n and g(t′) ./ 0. Since g is differentiable, for the mean value theorem, there

exists a point t′b ∈ (ti−1, tb) such that ġ(t′b) = g(tb)−g(ti−1)
(tb−ti−1)

and therefore ġ(t′b) < 0.

Similarly, there exists a point t′′b ∈ (tb, ti) such that ġ(t′′b ) = g(ti)−g(tb)
(ti−tb) and therefore

ġ(t′′b ) > 0. Thus, ġ is not constant over (ti−1, ti) contradicting the hypothesis.



10 A. Cimatti et al.

Let us now consider the case in which ./=>, i = 1 and g(t) = 0 (the case i = n

and g(t′) = 0 is similar). By hypothesis, ġ(t) > 0. Thus, there exists t0 ∈ (ti−1, tb)
such that g(t0) > 0. As before there exists a point t′b ∈ (t0, tb) such that ġ(t′b) =
g(tb)−g(t0)

(tb−t0) and therefore ġ(t′b) < 0. Similarly, there exists a point t′′b ∈ (tb, ti) such

that ġ(t′′b ) = g(ti)−g(tb)
(ti−tb) and therefore ġ(t′′b ) > 0. Therefore ġ is not constant over

(ti−1, ti) contradicting the hypothesis.
We conclude that ∀ε ∈ (t, t′), g(ε) ./ 0.

Hereafter, unless otherwise specified, we assume that every universal quantifier
occurs positively in TransD and that it is in the form ∀ε ∈ [t, t′], g(ε) ./ 0, with
./∈ {<,≤, >,≥,=}. As shown by the previous theorem, the assumption does not
limit the approach, but it simplifies the presentation of the results of the paper.

The definition of Constant() contains quantified sub-formulas in the form ∀ε ∈
[t, t′], ġ ./ 0. Therefore, the reduction can be iterated trying to remove the quanti-
fiers.

Theorem 3 can be used to simplify the encoding of the invariant of an HS.
Let the invariant be in the form g(X) ./ 0 (./∈ {≥,≤, >,<,=}). Let f : R→ R|X|
be the solution of the flow condition. If f and g are differentiable functions and
d
dt (g ◦ f) ./ 0 has finite variability, then ∀ε ∈ [t, t′], g(f(ε)) ./ 0 iff there exists a
finite sequence of real numbers t0 = t < . . . < tn = t′ such that

∧
0≤i≤n g(f(ti)) ./

0 ∧
∧

0<i≤n Constant( ddt (g ◦ f) ≥ 0, ti−1, ti).

The geometrical interpretation of d
dt (g ◦f) is the scalar product of the gradient

of the curve g and the derivative vector ḟ : in fact, d
dtg(f(t)) = 5g · ḟ where

5g = 〈 ∂g∂x1
, . . . , ∂g∂xn 〉 . Therefore, in the theorem, the condition of ġ ≥ 0 of being

constant in the interval means that the function f is uniformly getting closer to
(or farther from) the curve g in that interval.

As a side note, in the case of ODEs Ẋ = F (X), the new quantified formula
∀ε ∈ [t, t′], ddt (g◦f) ≥ 0 is equivalent to the invariant5g ·F ≥ 0. Thus, the reduction
can be also applied without need of the primitive solutions.

In the case that the invariants are polynomial and the continuous variables are
polynomial functions of time, the derivative will eventually reduce to zero.

4.2 Applications

4.2.1 Application to polynomial hybrid automata

We consider the class of HS where the invariants and the primitive solution of
the ODEs are polynomial functions of time (see also [22]). The polynomial may
contain some discrete variables as coefficients to account for uncertainties in the
inputs, model parameters, etc. Note that several classes of HS with linear ODE can
be expressed as a polynomial hybrid automaton, since the solution to the linear
system of ODEs can be expressed as a quantifier free formula in the theory of
reals [30]. We describe a quantifier-free encoding for some classes of linear hybrid
systems in Section 6.

Theorem 5 The invariant of a polynomial hybrid automaton can be encoded with a

quantifier-free formula.



Quantifier-free encoding of invariants for hybrid systems∗ 11

Proof In the case of polynomial hybrid automata, the invariant g ./ 0 is encoded
into a formula in the form ∀ε ∈ [t, t′], g(f(ε)) ./ 0. If g and f are polynomials,
g ◦ f is also a polynomial. The derivative of a polynomial has a lower degree than
the polynomial itself. Thus, at every application of Theorem 3, the degree of the
polynomial inside the quantifier strictly decreases. Thus, after a finite number of
applications of the theorem, we obtain a quantifier-free formula.

Example 2 Let us consider the classical example of the bouncing ball. Suppose
the ball moves in two dimensions x and y, where x is the horizontal coordinate,
with ẋ = v0, and y is the vertical coordinate, with ẏ = w and ẇ = −g. Thus, the
primitive solution is x(t) = v0t+ x0, y(t) = − g2 t

2 +w0t+ y0, and w(t) = −gt+w0.
Suppose the ball is bouncing on a parabolic hill, a curved surface with equation
y+ax2+bx+c = 0. The invariant of the continuous transition is y+ax2+bx+c ≥ 0
and its encoding is ∀ε ∈ [t, t′], y(ε) + ax2(ε) + bx(ε) + c ≥ 0, which is quadratic in
ε. After applying the Theorem 3 twice, we obtain the following quantifier-free
formula: y(t) + ax2(t) + bx(t) + c ≥ 0∧
y(t1) + ax2(t1) + bx(t1) + c ≥ 0∧
y(t′) + ax2(t′) + bx(t′) + c ≥ 0∧
((w(t) + 2av0x(t) + bv0 ≥ 0 ∧ w(t1) + 2av0x(t1) + bv0 ≥ 0)∨
(w(t) + 2av0x(t) + bv0 ≤ 0 ∧ w(t1) + 2av0x(t1) + bv0 ≤ 0))∧
((w(t1) + 2av0x(t1) + bv0 ≥ 0 ∧ w(t′) + 2av0x(t′) + bv0 ≥ 0)∨
(w(t1) + 2av0x(t1) + bv0 ≤ 0 ∧ w(t′) + 2av0x(t′) + bv0 ≤ 0))

4.2.2 Application to non-linear hybrid automata

In the general case of non-linear hybrid automata (here meant as hybrid systems
with non-polynomial functions), the reduction of Theorem 3 may result in more
complex quantified formulas. Even if we restrict to polynomial invariants, their
composition with transcendental primitive solutions may yield complex deriva-
tives. However, in many cases, we can convert the derived quantified formula into
a polynomial which is simpler than the original1.

Example 3 Let us consider a temperature controller. The system is parameterized
by the lower and upper temperature limits m and M , the outside temperature u,
the rate b of temperature exchanged with the outside, and the rate c of temperature
increase due to the heater. The constraints on the parameters are u < m < M ∧c >
0 ∧ b > 0. The HS is defined as follows:

– V = {h} where h is a variable representing the heater.
– X = {x} where x represents the temperature.
– Init := m ≤ x ≤M .
– Inv := (h = 0→ x ≥ m) ∧ (h = c→ x ≤M).
– Trans := (h = 0→ (x = m ∧ h′ = c)) ∧ (h = c→ (x = M ∧ h′ = 0)) ∧ x′ = x.
– Flow := ẋ = b(u− x) + h.

The primitive solution of the ODE when the location is h = c is x(t) :=

u + (x(0)−u)
b e(−b∗t) + c

b . Its derivative is x(t) := −(x(0) − u)e(−b∗t), which never
changes sign. Therefore, applying Theorem 3, ∀ε ∈ [t, t′], x ≥ m is translated into
the formula x(t) ≥ m ∧ x(t′) ≥ m and similarly for ∀ε ∈ [t, t′], x ≤M .

1 This conversion is not currently automated.
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Example 4 Consider the roundabout collision avoidance system example (cfr. e.g.
[35]). The continuous dynamics of a safe circular maneuver is described by the
following equations ẋ1 = d1, ẋ2 = d2, ḋ1 = −ωd2, ḋ2 = ωd1, ẏ1 = e1, ẏ2 = e2, ė1 =
−ρe2, ė2 = ρe1, (x1 − y1)2 + (x2 − y2)2 ≥ p2.

The primitive solution of the differential equations is:

x1 =
1

ω
sin(θ), x2 = − 1

ω
cos(θ),

d1 = cos(θ), d2 = sin(θ), θ = ωt+ t0,

y1 =
1

ρ
sin(ξ), y2 = −1

ρ
cos(ξ),

e1 = cos(ξ), e2 = sin(ξ), ξ = ρt+ t0

Substituting the primitive solution into the invariant (x1−y1)2+(x2−y2)2 ≥ p2
we obtain the formula:

1

ω2
+

1

ρ2
− 2

ωρ
sin(θ)sin(ξ)− 2

ωρ
cos(θ)cos(ξ) ≥ p2.

which can be rewritten into: φ := 1
ω2 + 1

ρ2 −
2
ωρcos(θ − ξ) ≥ p

2.

The standard quantified encoding is ∀t ∈ [0, δ], φ(t). Applying Theorem 3, we
obtain the formula:

φ(0) ∧ φ(δ)∧ (∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) ∨
∀t(−sin(θ − ξ)(ω − ρ) ≤ 0)).

The quantified sub-formulas can be rewritten into polynomials over θ and ξ. For
example, ∀t(−sin(θ−ξ)(ω−ρ) ≥ 0) can be rewritten into ∀t(ω−ξ ≥ 0∧(π ≤ θ−ρ ≤
2π) ∨ ω − ξ ≤ 0 ∧ (0 ≤ θ − ρ ≤ π)). Since θ and ρ are linear, this can be converted
into an equivalent quantifier-free one.

Example 5 Consider the steering car example of [27]. The flow invariant of the
location correct left is ṗ = −r∗sin(γ), γ̇ = ω, ċ = −2,−1 ≤ p ≤ 1, c ≥ 0. Let us make
the example more complex (and realistic) considering an (uniformly) accelerated
rotation by adding ω̇ = α, 0 ≤ α ≤ 3, where α is a (real valued) discrete variable.

The semantics of this flow invariant is that during a timed transition of δ
time units starting from the state p(0) = p0, γ(0) = γ0, c(0) = c0, ω(0) = ω0,
there exist the continuous differentiable functions p, γ, c, ω that satisfy the ODEs
ṗ = −r ∗ sin(γ), γ̇ = ω, ċ = −2, ω̇ = α and such that ∀t, 0 ≤ t ≤ δ(−1 ≤ p(t) ≤
1 ∧ c(t) ≥ 0 ∧ 0 ≤ α ≤ 3).

The removal of quantifiers is very similar to the Example 4.
The quantification can be distributed obtaining:

I1 := ∀t, 0 ≤ t ≤ δ(−1 ≤ p(t) ≤ 1)

I2 := ∀t, 0 ≤ t ≤ δ(c(t) ≥ 0)

I3 := ∀t, 0 ≤ t ≤ δ(0 ≤ α ≤ 3)

I3 is equivalent to 0 ≤ α0 ≤ 3 since α does not change during the timed
transition.

I2 is equivalent to c(0) ≥ 0 and c(δ) ≥ 0 since c is linear. This can be obtained
also from Theorem 3 by replacing ċ with −2 and simplifying.
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In order to remove the quantification of I1, we apply the Theorem 3 by ob-
taining

I1 ≡ −1 ≤ p(0) ≤ 1 ∧ −1 ≤ p(δ) ≤ 1 ∧
(∀t, 0 ≤ t ≤ δ(ṗ ≥ 0) ∨ ∀t, 0 ≤ t ≤ δ(ṗ ≤ 0))

By replacing ṗ with −r ∗ sinγ we obtain the invariant condition:

I1a := ∀t, 0 ≤ t ≤ δ(−r ∗ sin(γ) ≥ 0)

This can be solved considering 0 ≤ γ ≤ 2π by taking π ≤ γ ≤ 2π. This results
in the invariant condition:

I1b := ∀t, 0 ≤ t ≤ δ(π ≤ γ(t) ≤ 2π)

Applying again Theorem 3, we obtain an equivalent formula containing ∀t, 0 ≤
t ≤ δ(γ̇ ≥ 0). Now, since γ is linear we can remove the quantification in the
standard way.

5 Encoding HS with Polynomial Dynamics into Transition Systems

In this section, we show how Theorem 3 can be exploited to automatically en-
code a HS with polynomial dynamics into a transition system with quantifier-free
formulas.

Theorem 3 states the existence of the points t1, . . . , tn where the derivative
changes sign. However, such points are unknown. The encoding of a HS into a
transition system must thus implicitly represent when the derivative of the invari-
ant changes sign. This is achieved by simply forcing that the sign of the derivative
is constant throughout the timed transition. The encoding implicitly concatenates
timed transitions one after the other, delegating to the search the task of finding
the sequence of time points that split the interval, so that the sign of the derivative
is uniformly constant in the resulting trace.

Given a formula T including the invariant condition ∀ε ∈ [t, t′], g(ε) ./ 0, the
condition can be locally replaced with g(t) ./ 0 ∧ g(t′) ./ 0 ∧ Constant(ġ, t, t′) ob-
taining a new formula τ(T ).

τ performs a recursive substitution of the quantified expressions. The recursion
terminates when the quantified formula is a linear polynomial, thus allowing to
the quantifiers to be trivially removed. τ is defined recursively as follows:

τ(ψ1 ∧ ψ2) := τ(ψ1) ∧ τ(ψ2) (1)

τ(ψ1 ∨ ψ2) := τ(ψ1) ∨ τ(ψ2)

τ(¬ψ) := ¬ψ, (ψ is a predicate)

τ(∀ε ∈ [t, t′], g(ε) ./ 0) :=


g(t) ./ 0 ∧ g(t′) ./ 0 if g linear

g(t) ./ 0 ∧ g(t′) ./ 0∧
τ(Constant(ġ, t, t′)) otherwise

The correctness of the transformation is given by the following theorem.
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Theorem 6 If SD is the encoding of the HS S and τ(SD) is the transition system

obtained by replacing Trans with τ(Trans), then τ(SD) is the encoding of a sampling

refinement of S.

Proof (⇐) If a sequence of states satisfies τ(SD), then by Theorem 3, the sequence
satisfies also SD, and by Theorem 1, it represents a path of S. (⇒) Consider a
hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of S. Assuming that ġ has
finite variability, we can refine the hybrid trace into a new hybrid trace in which ġ

is constant in every interval. The new hybrid trace also satisfies S by Theorem 2
and thus the corresponding discrete trace s0, . . . , sk satisfies its encoding SD. At
every i, if si satisfies ∀ε ∈ [t, t′], g(ε) ./ 0, then both f(si, t) and f(si, t

′) satisfy
g ./ 0. Since ġ has constant sign in Ii, si satisfies also τ(Trans). Therefore the
discrete trace satisfies also τ(SD).

The recursive definition of τ in (1) creates a formula whose size is exponential in
the degree of the polynomial inside the invariant. We use the following equivalence
to keep the size of the encoding linear in the degree of the polynomial (here g is
not linear):

τ(Constant(g, t, t′)) = (g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧ τ(Constant(ġ, t, t′))) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0 ∧ τ(Constant(ġ, t, t′)))

= ((g(t) ≥ 0 ∧ g(t′) ≥ 0) ∨ (g(t) ≤ 0 ∧ g(t′) ≤ 0)) ∧
τ(Constant(ġ, t, t′))

The sequential encoding may force the split of a continuous transition in several
transitions, since the predicates introduced to remove the quantifiers force the
derivatives of the invariant conditions to be constant. While the encoding enables
to remove the quantifier, the depth of the bounded model checking formula may
increase due to the splitting. In incremental bounded model checking, the burden
of finding how many splits are necessary is delegated to the search.

In the case of polynomial hybrid automata we can compute an upper bound on
the number of consecutive continuous transitions (continuous transitions not sepa-
rated by a discrete transition) needed to simulate the longest quantified continuous
transition (the continuous transition with the maximum time elapse).

We can compute the upper bound on the number of intervals needed to “cover”
the quantified continuous transition for the invariant predicate ∀ε ∈ [t, t′], g(ε) ./ 0.
If Ω(g) is the degree of the polynomial, then the maximum number of intervals

that have to be considered is ub(g) = Ω(g)∗(Ω(g)−1)
2 . In fact, the i-th derivative of

g has degree Ω(g)− i and thus changes sign Ω(g)− i times.

6 Encoding of Linear Hybrid Systems into Transition Systems

In this section we describe how we can encode subclasses of Linear Hybrid Systems

using quantifier free formulas. We rely on the results presented by [30], which
show how the primitive solution of several classes of linear hybrid systems can be
encoded in the thory of reals. While their approach trivially handles invariants,
it still relies on universal quantification. We show that in two cases the universal
quantifier can be removed by applying Theorem 5. The process is straightforward
in one case, while it requires several steps in the other.
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We consider Linear Hybrid Systems where each flow condition is of the form
Ẋ = AX + b, where A ∈ Rn×n, b : Rn → Rn 2.

Given a matrix M ∈ Rq × Rs, with q, s ∈ N, we will write Mij to refer to the
element at the i-th row and at the j-th column of M . We will avoid one index in
the case of vectors, where s = 1. Also, we denote with Λ the set of eigenvalues of
A. To ease the presentation, we will use the symbol δ to represent the amount of
time t′ − t elapsed in a continuous transition.

Let L be a set of symbolic parameters that can be used in the inputs b. The
value of each l ∈ L is unknown, but it does not change during the execution of the
system. Moreover, the set L is disjoint from the set of the variables of the hybrid
system (X ∪ V ). Let P be a set of functions over δ (e.g. P = {p(δ) = δn, n ∈ N} is
the set of all the powers of δ with a natural exponent). Let MP be a set of inputs
paramterized by P :

MP :=

{
b ∈ [b1, . . . , bn]T | for i ∈ [1, n], bi(δ) =

r∑
l=1

ui,lpl(δ),

pl(δ) ∈ P, ui,l is a ΣR-formula over L
}

P determines the function of the terms pl(δ). We will consider different families of
inputs, parameterized by different families of functions P .

Given a linear system Ẋ = AX+b the reachability problem can be expressed in
the theory of reals if the matrix A and the inputs b have a particular structure[30]:

– A is nilpotent and P = {δn, n ∈ Z}.
– A is diagonalizable, all its eigenvalues are real and P = {eulδ, ul /∈ Λ, ul ∈ Q}.
– A is diagonalizable, all its eigenvalues are imaginary and P = {sin(ulδ), ul /∈
Λ, ul ∈ Q} ∪ {cos(ulδ), ul /∈ Λ, ul ∈ Q}.

We will provide a quantifier-free encoding for the first two cases.
Note that we do not consider symbolic coefficients in the matrix A. While in

the first case obtaining an exact solution in the theory of reals is straightforward,
also in the presence of symbolic coefficients of the matrix, the second case is more
involved and, since its applicability depends on the coefficient of A (i.e. eigenvalues
and diagonalizability), it requires imposing several constraints on the parameters.

The general solution of Ẋ = AX + b is:

X(δ) = f(X, δ, b) = eAδX + Ψ(X, δ, b)

where:

Ψ(X, δ, b) =

∫ δ

s=0

eA(δ−s)b(s) ds eAδ =
∞∑
k=0

δk

k!
Ak

6.1 Reduction in the nilpotent case

Suppose that the flow condition in the location of a hybrid automaton is of the form
Ẋ = AX + b, where A is nilpotent and the inputs are of the form P = {δi, i ∈ N}.

2 This definition is sufficient to represent input BU where B ∈ Rn×m and U : Rm → Rn
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Also, suppose that g(X, δ) ./ 0 be the invariant in the location, and g(X, δ) be a
multivariate polynomial with variables in X and P = {δi, i ∈ N}.

In this case, for each 1 ≤ i ≤ n the solution is:

f(X, δ, b)i :=
n∑
k=1

γij(X) + δk−1 +
v∑
k=0

ρi,k(b)δk−1

for some v ∈ N, some polynomials ρi,k(b) and γij(X) =
∑n
j=1 (Ak)ijxj

1
k! . Note

that we do not know a priori
∑v
k=0 ρi,k(b)δk, since it depends on the inputs b.

However, an expression of this form can always be obtained as a solution of the
integral in Ψ(X, δ, b) (i.e. in this case we are just integrating a polynomial over
t). Thus, the primitive solution f(X, δ, b) is a ΣR-formula without transcendental
functions (i.e. a polynomial).

Also the invariant g(X, δ) is a multivariate polynomial over X and P = {δi, i ∈
N}. The encoding of the continuous transition in the location is:

δ > 0 ∧
n∧
i

f(X, δ, b)i ∧ ∀ε ∈ [0, δ], g(X, ε) ./ 0

We are in the case of polynomial hybrid automata, so we apply the Theorem 5 to
obtain a quantifier-free encoding.

Note that the bouncing ball example (see Example 2) with a set of instantiated
parameters, falls in this class of systems.

Example 6 The movement of two vehicles which follows a uniformly accelerated
motion can be modeled with the linear dynamic Ẋ = AX + b where: XT :=

[
x1 v1 a1 x2 v2 a2

]
. A :=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 and bT :=
[
0 0 10 0 0 6

]
. The invariant of

the system x1 ≤ x2 +sd guarantees that the first vehicle follows the second vehicle
respecting a safety distance sd. The primitive solutions are: x1(δ) = 5t2 + v1(0)t+
x1(0), v1(δ) = 10t+v1(0), a1(δ) = 10, x2(δ) = 3t2+v2(0)+x2(0), v2(δ) = 6t+v2(0),
a2(δ) = 6. The quantified invariant may be rewritten as:

∀ε ∈ [0, δ], 2ε2 + (v1(0)− v2(0))ε+ x1(0)− x2(0)− sd ≤ 0

Thus, applying Theorem 5 we remove the quantifers:

x1(0)− x2(0)− sd ≤ 0∧

2δ2 + (v1(0)− v2(0))δ + x1(0)− x2(0)− sd ≤ 0∧
(v1(0) + v1(0) ≥ 0 ∧ 4 ∗ δ + v1(0) + v1(0) ≥ 0)∧

(v1(0) + v1(0) < 0 ∧ 4 ∗ δ + v1(0) + v1(0) < 0)
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6.2 Reduction in the case A is diagonalizable with real eigenvalues

Suppose that the flow condition in the location of a hybrid automaton is of the
form Ẋ = AX + b, where A is diagonalizable, all its eigenvalues are real (i.e.
Λ ⊂ R) and the inputs are of the form P = {eulδ, ul /∈ Λ, ul ∈ Q}. Also, suppose
that g(X, δ) ./ 0 is the invariant in the location, and g(X, δ) is a multivariate
polynomial with variables in X and P = {eulδ, ul /∈ Λ, ul ∈ Q} 3. Since A is
diagonalizable, there exists an invertible matrix T ∈ Rn×n such that A = TDT−1,

where D =

λ1 . . .
λn

 is the diagonal matrix of A. Hence, we can compute

eAδ = eTDT
−1δ = T

eλ1δ

. . .

eλnδ

T−1.

In this case, for each 1 ≤ i ≤ n we have:

f(X, δ, b)i :=
n∑
k=1

γi,k(x)eλkδ +
s∑

k=1

ψik(b)eνkδ

where s ∈ N, γi,k(x) is a polynomial, and for all 1 ≤ k ≤ s, νk ∈ Q and ψik(b) is a
polynomial. Let us write f(X, δ, b)i as follows (for some natural q > 0):

f(X, δ, b)i :=

q∑
k=1

φik(X, b)eηkδ

The formulas f(X, δ, b)i are such that δ occurs only in the exponent of e, and
hence we have terms like eηδ, where η ∈ Q. We also required the same property in
the invariant g. Thus, we substitute the exponential with a new variable z both in
the solution and in the invariant as follows:

– We compute a common denominator d among all the rational coefficients η
(i.e. d =

∏
for all the coefficients η den(η)), where den(η) is the denominator of η.

– We define the variable z = e
δ
d .

– We substitute e
δ
d with z in the solution and in the invariant:

– for all 1 ≤ i ≤ n f(X, z, b)i := f̂(X, δ, b)[z/e
δ
d ]i).

– ˆg(X, z) := g(X, δ)[z/e
δ
d ].

– If f̂ contains a negative power of z, i.e., some z−l with l > 0, we substitute it
with wl, where zw = 1:
– 1 ≤ i ≤ n f̂(X, z,w, b) = f̂(X, z, b)[wl/z−l]i ∧ wz = 1.

Remark 6 If we want to obtain a polynomial, the substitution of e
δ
d with z forbids

the use of the variable t, which tracks the total amount of elapsed time, in the
transition system. In fact, t is updated in the continuous transition using a loga-
rithm (t′ = ln(z) − t). This shows that in the system we cannot have continuous
variables that evolve as clocks (i.e. a variable x such that ẋ = 1).

3 Note that ul cannot be an eigenvalue of the system. This condition is necessary to get a
solution where δ appears only as exponent of e, thus enabling the removal of the exponential
function via substitution.
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The encoding of the continuous transition in the location is:

δ > 0 ∧
n∧
i

f(X, δ, b)i ∧ ∀ε ∈ [0, δ], g(ε) ./ 0

Performing the substitution we obtain the following formula:

z > 1 ∧ zw = 1 ∧
n∧
i

f̂(X, z,w, b)i ∧ ∀zε ∈ [1, z], ĝ(X, zε) ./ 0

Note that ĝ(X, zε) may contain negative powers of z. However, z > 0 and we can
multiply both sides of ĝ(X, zε) by zl where l is the greatest negative order with
which occurs in ĝ. Now we can recursively apply Theorem 3 to obtain a quantifier
free formula.

Example 7 Consider a system with XT = [x, y], A =

[
1 −12

5−12
5 1

]
, bT = [1, 1] and

invariant x2 ≥ 0. The eigenvalues of A are −7
5 and 17

5 and A is diagonalizable. The
solution X(δ) is:

x(δ) :=
x− y

2
e

17
5
δ +

x+ y

2
e−

7
5
δ − 5

7
e−

7
5
δ +

5

7

y(δ) :=
y − x

2
e

17
5
δ +

x+ y

2
e−

7
5
δ − 5

7
e−

7
5
δ +

5

7

In this case we use the following variables for the substitution (note that the d = 5):

z = e
1
5
δ:

x̂(z) :=
x− y

2
z17 +

x+ y

2
z−7 − 5

7
z−7 +

5

7

ŷ(z) :=
y − x

2
z17 +

x+ y

2
z−7 − 5

7
z−7 +

5

7

ĝ(z) is:

ĝ(z) :=(
5

7
x+

5

7
y +

x+ y

2
+

25

49
)z−14 + (

5

7
x+

5

7
y +

50

49
)z−7+

(
x2

2
+

5

7
x− y2

2
− 5

7
y)z−7z17 +

x− y
2

2

z34(
5

7
x− 5

7
y)z17 +

25

49

Then, we multiply both sides of ĝ(z) ./ 0 by z14:

x− y
2

2

z48 + (
5

7
x− 5

7
y)z31 + (

x2

2
+

5

7
x− y2

2
− 5

7
y)z24 +

25

49
z14

(
5

7
x+

5

7
y +

50

49
)z7 + (

5

7
x+

5

7
y +

x+ y

2
+

25

49
) ./ 0
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7 Related work

The quantifier-free encoding that we propose is related to quantifier elimination
procedures (see, e.g., [19]). It is not a quantifier elimination procedure in that
it contains new variables that are implicitly existentially quantified. In fact, we
apply the reduction even in some cases of transcendental functions. The burden to
remove the quantifiers is delegated to the verification techniques if necessary. We
claim that quantifier elimination is somehow an overkill: the verification techniques
does not often need the precise region of points where the invariant holds; it is
usually sufficient either to pick some “good” values (in case of reachability) or to
find “good” invariants (in case of safety verification).

Several works focus on the reachability problem for hybrid systems, but they
use less expressive invariants or they restrict the class of the analyzed hybrid
automata. We extend the bounded model checking encoding of linear hybrid au-
tomata [5,1], where invariants hold iff they hold at the first and the last instant of a
timed transition, thus the resulting encoding is quantifier free. Other approaches
[11,21,27] focus on non-linear hybrid automata. In [11], the authors solve the
reachability problem for non-linear convex hybrid automata. The restriction to
convex invariant and linear flow conditions, or to monotonic invariant and convex
flow, allows an easy encoding of invariants without quantifiers. Many examples, in-
cluding those mentioned in this paper, do not fall in this class of automata. In [21]
the authors propose an SMT solver modulo ODEs, that can be used to perform
bounded model checking on hybrid automata where the flow conditions are ODEs.
The only allowed invariants are of the form x ∈ [l, u], where x is a continuous vari-
able and l, u ∈ R. Their main focus is on the integration of numerical methods
to compute the initial value problem for ODEs, while they cannot manage more
complex invariants (e.g. linear functions). ODEs are also handled directly in [27].
This is done by computing the precise intersection of the continuous flow with the
guards of the hybrid automaton. The solver can in principle handle invariants,
but the authors state that the implementation is not mature enough to evaluate
the approach. Approaches based on motion planning [33] do not encode symbol-
ically the invariants, since they simulate the ODEs using numerical methods. In
contrast, we encode a set of continuous transitions.

The prominent approaches to the verification of HSs are based either on the
exploration of the reachable states or on deductive systems. We refer the readers
to [2] for a recent survey. The focus of our work is on the SMT-based paradigm,
which, although less mature, seems promising.

Our settings also differs from the works that build abstractions for HSs. The ap-
proaches described in [39,37] use techniques based on the sign of derivatives such as
ours. However, the purpose is different in that they generate over-approximations
of the HS.

Finally, we mention the “clock translation” described in [25], where invariants
are translated into constraints on time. However, the translation is restricted to
monotonic flows (plus other restrictions on the independence of variables).
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8 Experimental evaluation

8.1 Benchmarks

We applied our approach to several benchmarks of non-linear hybrid automata,
obtaining a quantifier-free encoding. For the polynomial subcase we used the ETCS
benchmark [26], an industrial case study of the braking control system of trains,
the classic bouncing ball, and a simple ballistics example. For the bouncing ball,
we used four variants: a ball moving vertically in one dimension and bouncing on
a plain floor, a two-dimensional variant with constant horizontal speed, a third
variant still in two-dimensions but bouncing on a hill (vertical parabola), and
a fourth variant bouncing on a slope (horizontal parabola). As for the ballistics
example, we modeled an object that flies above an obstacle keeping below a certain
ceiling. As for nonlinear benchmarks with transcendental functions, we used the
temperature controller, the roundabout collision avoidance system and the steering
car mentioned in Sec. 4.2.2. All the benchmarks are publicly available at http:

//es.fbk.eu/people/mover/tests/FMSD_FMCADSI/.

8.2 Implementation and optimizations

The techniques discussed in the previous sections have been implemented in an
extension of NuSMV4, which is able to deal with HSs formalized in the HyDI

language [14]. The NuSMV extension features an SMT-based approach to the
verification of HSs, including bounded model checking and inductive reasoning.
We automatically encode the invariants for polynomial hybrid automata, while we
manually encode the invariants for the other benchmarks. iSAT5 is used as the
backend to solve the resulting satisfiability queries.

Another optimization that we implemented is the use of some lemmas that
relate the value of polynomials to the value of their derivatives. More specifically,
we optionally add to τ the following formulas:

(ġ(t) > 0 ∨ ġ(t′) > 0) → ((g(t) ≥ 0→ g(t′) ≥ 0) ∧ (g(t′) ≤ 0→ g(t) ≤ 0)) ∧
(ġ(t) < 0 ∨ ġ(t′) < 0) → ((g(t) ≤ 0→ g(t′) ≤ 0) ∧ (g(t′) ≥ 0→ g(t) ≥ 0))

The formula means that when the derivative is positive g can only increase
(thus cannot pass from positive to negative) and vice versa when ġ is negative g
can only decrease (thus cannot pass from negative to positive).

In the BMC settings we usually perform a search where we check if the target is
violated for an increasing path length. In principle, the removal of the quantifiers
requires more continuous transitions, thus increasing the size of the formula passed
to the solver. It is convenient to use a “layered” approach, where we first reach the
target in an over-approximation of the HS, where invariants are not guaranteed
to hold, and then we check if there exists a path that reaches the target and for
which invariants hold.

4 http://nusmv.fbk.eu/
5 http://isat.gforge.avacs.org/
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# vars Max degree RedLog QepCAD

etcs braking 4 2 0.14 0.05
ball 1d plain 4 2 0.10 0.03
ball 2d plain 4 2 0.10 0.03
ball 2d hill 5 2 0.15 T.O. > 3600.00
ball 2d slope 5 4 N.A. T.O. > 3600.00
simple ballistics 5 4 N.A. T.O. > 3600.00

Table 1 Results of applying quantifier elimination to the polynomial benchmarks (max degree
is the maximum degree of the quantified variable,T.O.is a time out of 3600 seconds, N.A. means
not applicable).

8.3 Experimental setting and results

We evaluated the alternative use of quantifier elimination procedures, within their
range of applicability, i.e. polynomial hybrid automata. We experimented with
Cylindrical Algebraic Decomposition (CAD) (using QepCAD6) and Virtual Sub-
stitution (using RedLog7). Table 1 reports, for each polynomial benchmark, the
time needed to obtain a quantifier free formula of the invariants using QepCAD

and RedLog. The Virtual Substitution approach of RedLog can only handle for-
mulas quantified over a quadratic variable. QepCAD is slightly more general, but
de facto less useful: the results highlight the dramatic computational complexity of
the procedure (e.g. ball 2d hill, with 5 variables, times out in one hour). Thus, the
quantifier elimination approach cannot even handle the polynomial benchmarks
ballistic and ball 2d slope (in addition to the benchmarks with transcendental func-
tions).

We used the bounded model checking functionalities enabled by our approach
to validate the various models and to evaluate the performance of the invariant
encoding. For each model we generated different reachability properties which are
falsified by traces with an increasing length. We evaluated the encoding of the
invariant by comparing the time needed to find these traces with BMC. When
quantifier elimination was able to produce a result, we also compared it with our
approach using the same SMT-based technique, in order to evaluate the overhead
caused by the splitting. The results are shown in Table 2. The encoding time of our
approach is instantaneous in all cases. In the cases where quantifier elimination is
feasible, the resulting encoding may induce traces with a smaller number of steps,
because timed transitions must not be split. This happens for the ball 1d plain and
the ball 2d hill benchmarks. The reduced number of steps also reduces the time
needed to generate the trace.

Our approach was also able to prove a simple invariant on the ballistics ex-
ample, that was beyond the applicability of SMT-based techniques. We chose as
obstacle a circle shape with center in (c, 0) and radius r. If the ceiling level is less
than r, the object cannot clearly pass. This has been proved with NuSMV and
iSAT. Ignoring the invariant along the timed transitions (keeping it only on the
discrete points) allows for spurious traces that forbid the inductive proof. Note
that this small example is beyond the applicability of quantifier elimination (see
Table 1).

6 http://www.usna.edu/cs/ qepcad/B/QEPCAD.html
7 http://redlog.dolzmann.de/
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quantifier-
free

encoding

qelim (qepcad) qelim (redlog)

etcs braking 66.75 / 17 161.52 / 17 168.16 / 17
ball 1d plain.01 0.05 / 2 0.05 / 2 0.03 / 2
ball 1d plain.02 25.50 / 6 0.09 / 4 0.06 / 4
ball 1d plain.03 31.43 / 10 0.28 / 6 0.40 / 6
ball 1d plain.04 36.23 / 14 0.46 / 8 0.65 / 8
ball 1d plain.05 151.41 / 18 1.27 / 10 1.51 / 10
ball 2d plain.01 0.08 / 2 0.18 / 2 0.28 / 2
ball 2d plain.02 4.20 / 6 3.14 / 6 3.64 / 6
ball 2d plain.03 16.04 / 10 15.90 / 10 62.64 / 10
ball 2d hill.01 1.30 / 4 na / na 0.94 / 2
ball 2d hill.02 118.67 / 8 na / na 15.36 / 4
ball 2d slope.01 to / na na / na na / na
simple ballistics 8.31 / 1 na / na na / na

Table 2 Results (running time / path length) of BMC with the different encodings.

Some remarks are in order. Our approach strongly depends on the availability
of SMT solvers for quantifier-free theories of nonlinear arithmetic, to solve the
formulas resulting from our SMT-based verification engines. To this end, we tried
to use all the available solvers for nonlinear arithmetic: Z38, SMT-RAT9, CVC310,
miniSMT11, RAHD12, hydlogic13, dReal14. and iSAT15. Z3 and SMT-RAT imple-
ment two complete decision procedures for the non-linear arithmetic over reals.
currently, neither solver integrates a layering with the linear arithmetic solver:
in this case all the linear arithmetic constraints are handled using the non-linear
solver, thus resulting in an inefficient approach. This is the case for our BMC case
studies, which have a significant part of linear constraints. Instead, CVC3 and
miniSMT implement an incomplete decision procedure for non-linear arithmetic
(and miniSMT is tailored only to check satisfiable formulas). As a result, these
solvers turned out to return “unknown” on most of the queries generated from
our benchmarks. The hydlogic system turned out to be immature, while RAHD
exports functionalities that are closer to a theory solver than a full SMT solver,
requiring an explicit treatment of disjunctions. iSAT and dReal differ from the
other solvers, since they can also provide non-precise solutions. dReal returns an
unsatisfiable answer or a satisfiable answer if the formula is satisfiable under a
bounded numerical perturbations. iSAT may return “unknown” exposing the re-
sults of interval constraints propagation: it produces the intervals found in the
search, if these are below a user-defined threshold, as a candidate solution. In
many practical cases, this is not spurious, and represents a satisfying assignment
of the formula.

8 http://research.microsoft.com/en-us/um/redmond/projects/z3/
9 http://smtrat.sourceforge.net/

10 http://cs.nyu.edu/acsys/cvc3/
11 http://cl-informatik.uibk.ac.at/software/minismt/
12 http://homepages.inf.ed.ac.uk/s0793114/rahd/
13 http://code.google.com/p/hydlogic/
14 http://www.cs.cmu.edu/ sicung/dReal/
15 http://isat.gforge.avacs.org/
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Overall, despite some recent progress, our experience has shown that the field
still requires additional research to deliver what our approach requires, both in
terms of completeness, and performance. However, we argue that our method is
valuable regardless of the current status of SMT for nonlinear arithmetic. First, we
proposed a solution to a problem that was a show-stopper for SMT-based verifica-
tion. In fact, we are now able to solve some benchmarks that cannot be solved by
overapproximation, just forgetting about the quantified invariants. Second, we are
hopeful that the field of SMT can deliver quick progress in quantifier-free nonlinear
arithmetic. In fact, the development of SMT solving for non-linear arithmetic has
been influenced by benchmarks from other domains (e.g. most of the SMT-LIB
benchmarks in NRA are from the software domain). To this extent, we generated
and submitted to the SMT-LIB a vast number of benchmarks, that will trigger
additional research in practically relevant directions.

9 Conclusions

In this paper, we tackled the problem of dealing with invariant constraints in
hybrid systems in the setting of SMT-based verification. This is largely an open
problem, due to the presence of the universal quantifiers required to encode that
the invariant must hold throughout all time instants in delay transitions.

We proposed new methods that allow for the reduction to quantifier-free the-
ories, at the cost of introducing additional variables. Our approach provides a
comprehensive handling of invariants. First, it allows us to handle a wide range
of hybrid systems, either automatically, as in the case of polynomial hybrid au-
tomata and for some subclasses of linear hybrid systems, or manually, since we
may apply several patterns of reduction to obtain quantifier-free formulas. Then,
the approach provides a uniform technique to encode the invariants, since it can
be applied also in the presence of disjunctions, which were not considered in the
existing encodings. As a result, we extend the applicability of the SMT-based
verification methods, and were able to verify some novel benchmark problems.

The approach opens several lines of research. First, we will experiment with
different layered approaches to the analysis of non-linear constraints, where less
expensive (e.g. linear) solvers are applied whenever possible before resorting to
expensive but more precise nonlinear solvers. Then, we will use the encoding
to simulate the abstract paths obtained by an abstraction-refinement framework
(we may consider different abstractions, for example [37,32]). This use case may
slightly differ from the BMC scenario since the search performed by the SMT
solver may be partially constrained by the abstract path. Then, we will generalize
the approach to the analysis of networks of hybrid automata; in particular, we will
exploit the locality of the splits of the continuous transitions in the local time se-
mantics framework. Finally, we will apply the proposed techniques to the analysis
of requirements expressed in HRELTL logic [17]. In fact, HRELTL requires the
predicates to be constant in arbitrary intervals of time.
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