
Parameter Synthesis with IC3
Alessandro Cimatti

Fondazione Bruno Kessler
Email: cimatti@fbk.eu

Alberto Griggio
Fondazione Bruno Kessler

Email: griggio@fbk.eu

Sergio Mover
Fondazione Bruno Kessler

Email: mover@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Email: tonettas@fbk.eu

Abstract—Parametric systems arise in different application
domains, such as software, cyber-physical systems or tasks
scheduling. A key challenge is to estimate the values of parame-
ters that guarantee the desired behaviours of the system.

In this paper, we propose a novel approach based on an exten-
sion of the IC3 algorithm for infinite-state transition systems. The
algorithm finds the feasible region of parameters by complement,
incrementally finding and blocking sets of “bad” parameters
which lead to system failures. If the algorithm terminates we
obtain the precise region of feasible parameters of the system.

We describe an implementation for symbolic transition systems
with linear constraints and perform an experimental evaluation
on benchmarks taken from the domain of hybrid systems. The
results demonstrate the potential of the approach.

I. INTRODUCTION

Parametric systems arise in many application domains from
real-time systems to software to cyber-physical systems. In
these applications, the system is often part of a larger envi-
ronment, and the designer has to define the system relative to
some unknown parameters of the environment. The design of
a robust system requires the verification to not rely on concrete
values for the parameters but to prove the correctness of the
system for a certain region of values. The use of parameters is
fundamental in the early phases of the development, giving the
possibility to explore different design choices. In fact, a para-
metric system represents a set of (non-parametric) systems,
one for each valuation of the parameters.

A key challenge for the design of parametric systems is
the estimation of the parameter valuations that guarantee the
correct behavior of the system. A manual estimation of these
values is time consuming and does not allow to find optimal
solutions for specific design problems. Therefore, a fundamen-
tal problem is to automatically synthesize the maximal region
of parameter valuations for which the system satisfies some
properties.

In this paper, we focus on SMT-based verification of invari-
ant properties and how to extend SMT-based algorithms to
solve the synthesis problem. The general approach works by
complement, iteratively building the set of “bad” parameter
valuations. It relies on the enumeration of counterexamples
violating the properties, extracting from the counterexample a
region of “bad” parameter valuations by quantification of the
state variables.

The novel contribution of this paper is a new synthesis
algorithm based on IC3, one of the major recent breakthroughs
in SAT-based model checking, and lately extended to the SMT
case. The key idea of the synthesis algorithm is to exploit the

features of IC3. First, IC3 finds counterexamples consisting of
a sequence of states s0, si, . . . , sk that are guaranteed to reach
a bad state in k−i steps; this is exploited to quantify the state-
variables to find a region of bad parameter violations, without
the need of quantify over full paths. Second, the internal
structures of IC3 allows our extension to be integrated in a
fully incremental fashion, reusing all the previously discovered
information.

Various approaches already solve the parameter synthesis
problem for several kind of systems, like infinite-state transi-
tion systems [5], timed and hybrid automata [10], [13], [9],
[8], [2]. The advantages of the new algorithm with respect
to other approaches are that it synthesizes an optimal region
of parameters (unlike [9], [2]), it is incremental and applies
quantifier elimination only to small formulas (unlike [9], [8]),
and it avoids computing the whole set of the reachable states
(unlike [10], [13]).

We implemented the algorithm for symbolic transition sys-
tems with linear constraints and performed an experimental
evaluation on benchmarks on real-time and hybrid systems.
We compared the approach with similar SMT-based techniques
and with other techniques based on the computation of the
reachable states. The results show the potential of the ap-
proach.

II. BACKGROUND

A. Transition Systems

A transition system S is a tuple S = 〈X, I, T 〉 where X
is a set of (state) variables, I(X) is a formula representing
the initial states, and T (X,X ′) is a formula representing the
transitions. In this paper, we shall deal with linear rational
arithmetic formulas, that is, Boolean combinations of propo-
sitional variables and linear inequalities over rational variables.
A state of S is an assignment to the variables X . A path of S
is a finite sequence s0, s1, . . . , sk of states such that s0 |= I
and for all i, 0 ≤ i < k, si, s′i+1 |= T . Given a formula
P (X), the verification problem denoted with S |= P is the
problem to check if for all paths s0, s1, . . . , sk of S, for all
i, 0 ≤ i ≤ k, si |= P . The dual problem is the reachability
problem, which is the problem to find a path s0, s1, . . . , sk
of S such that sk |= ¬P . P (X) represents the “good” states,
while ¬P represents the “bad” states.

B. Parameter Synthesis

In parametric systems, besides the standard constants, the
formulas can include also parameters, which are rigid symbols

with “unknown” values.
Let U be the set of parameters. A parameter valuation

is as assignment to the parameters. Given a formula φ and
a parameter valuation γ, we denote with γ(φ) the formula
obtained from φ by replacing each parameter in U with the
assignment given by γ.

A parametric transition system S is a tuple S =
〈U,X, I, T 〉 where U is the set of parameters, X is the set
of variables, I(U,X) is the initial formula, and T (U,X,X ′)
is the transition formula. Each parameter valuation γ induces
a transition system Sγ = 〈X, γ(I), γ(T)〉.

Given a parametric transition system S = 〈U,X, I, T 〉 and
a formula P (U,X), we say that a parameter valuation γ is
feasible iff Sγ |= γ(P). The parameter synthesis problem is
the problem of finding a set ρ(U) of parameter valuations
such that, for every γ ∈ ρ, Sγ |= γ(P) (i.e., a set of
feasible parameter valuations). We say that ρ(U) is optimal
if it contains all the feasible parameter valuations.

C. IC3 with SMT

IC3 is an efficient algorithm for the verification of finite-
state systems, with Boolean state variables and propositional
logic formulas, introduced by Bradley in [4]. IC3 was subse-
quently extended to the SMT case in [6], [11]. In the following,
we present its main ideas, following the description of [6]. For
brevity, we have to omit several important details, for which
we refer to [4], [6], [11].

Let S and P be a transition system and a set of good states
as in §II-A. The IC3 algorithm tries to prove that S |= P
by finding a formula F (X) such that: (i) I(X) |= F (X);
(ii) F (X) ∧ T (X,X ′) |= F (X ′); and (iii) F (X) |= P (X).

In order to construct an inductive invariant F , IC3 maintains
a sequence of formulas (called trace) F0(X), . . . , Fk(X) such
that: (i) F0 = I; (ii) Fi |= Fi+1; (iii) Fi(X) ∧ T (X,X ′) |=
Fi+1(X

′); (iv) for all i < k, Fi |= P ;
The algorithm proceeds incrementally, by alternating two

phases: a blocking phase, and a propagation phase. In the
blocking phase, the trace is analyzed to prove that no intersec-
tion between Fk and ¬P (X) is possible. If such intersection
cannot be disproved on the current trace, the property is
violated and a counterexample can be reconstructed. During
the blocking phase, the trace is enriched with additional
formulas, that can be seen as strengthening the approximation
of the reachable state space. At the end of the blocking phase,
if no violation is found, Fk |= P .

The propagation phase tries to extend the trace with a new
formula Fk+1, moving forward the clauses from preceding
Fi’s. If, during this process, two consecutive elements of the
trace (called frames) become identical (i.e. Fi = Fi+1), then
a fixpoint is reached, and IC3 can terminate with Fi being an
inductive invariant proving the property.

More in detail, in the blocking phase, IC3 maintains a set
of pairs (s, i), where s is a set of states that can lead to a
bad state, and i > 0 is a position in the current trace. New
formulas (in the form of clauses) to be added to the current
trace are derived by (recursively) proving that a set s of a pair

(s, i) is unreachable starting from the formula Fi−1. This is
done by checking the satisfiability of the formula:

Fi−1 ∧ ¬s ∧ T ∧ s′. (1)

If (1) is unsatisfiable, and s does not intersect the initial states
I of the system, then ¬s is inductive relative to Fi−1, and IC3
strengthens Fi by adding ¬s to it1, thus blocking the bad state
s at i. If, instead, (1) is satisfiable, then the overapproximation
Fi−1 is not strong enough to show that s is unreachable. In this
case, let p be a subset of the states in Fi−1 ∧¬s such that all
the states in p lead to a state in s′ in one transition step. Then,
IC3 continues by trying to show that p is not reachable in one
step from Fi−2 (that is, it tries to block the pair (p, i − 1)).
This procedure continues recursively, possibly generating other
pairs to block at earlier points in the trace, until either IC3
generates a pair (q, 0), meaning that the system does not satisfy
the property, or the trace is eventually strengthened so that the
original pair (s, i) can be blocked.

A key difference between the original Boolean IC3 and
its SMT extensions in [6], [11] is in the way sets of states
to be blocked or generalized are constructed. In the blocking
phase, when trying to block a pair (s, i), if the formula (1)
is satisfiable, then a new pair (p, i − 1) has to be generated
such that p is a cube in the preimage of s wrt. T . In the
propositional case, p can be obtained from the model µ of (1)
generated by the SAT solver, by simply dropping the primed
variables occurring in µ. This cannot be done in general in
the first-order case, where the relationship between the current
state variables X and their primed version X ′ is encoded in
the theory atoms, which in general cannot be partitioned into a
primed and an unprimed set. The solution proposed in [6] is to
compute p by existentially quantifying (1) and then applying
an under-approximated existential elimination algorithm for
linear rational arithmetic formulas. Similarly, in [11] a theory-
aware generalization algorithm for linear rational arithmetic
(based on interpolation) was proposed, in order to strengthen
¬s before adding it to Fi after having successfully blocked it.

III. PARAMETER SYNTHESIS WITH IC3

A. Solving the synthesis problem with reachability

A naive approach to synthetize the set of parameters ρ(U) is
to incrementally find the complement set β(U) (thus, ρ = ¬β)
of unfeasible parameter valuations rephrasing the problem as a
reachability problem for a transition system Sρ and iteratively
removing the counterexamples to Sρ |= P .

More specifically, given the parametric transition system
S = 〈U,X, I, T 〉, the algorithm keeps an over-approximation
ρ(U) (initially true) of the safe region. The encoding of S
is the transition system Sρ = 〈X ∪ P, Iρ, Tρ〉 where Tρ =
T ∧

∧
p∈U p

′ = p forces parameters to not change their value
in the evolution of the system and Iρ = I ∧ ρ restricts the
parameter valuations to the over-approximation.

1In fact, ¬s is actually generalized before being added to Fi. Although this
is quite important for the effectiveness of IC3, here for simplicity we shall
not discuss this.

At every iteration, a new parameter valuation is removed
from ρ. The algorithm terminates if it proves that Sρ |= P ,
and ρ is the solution to the synthesis problem.

This simple approach does not work in the context of
infinite-state transition systems, where in general the possible
number of counterexamples and the values of the parameters
are infinite. For this reason, we need an algorithm that removes
a set of parameters, instead of a single point.

B. Description of the synthesis algorithm with IC3

We embed a reasoning similar to the naive algorithm in
IC3, exploiting the generalization of counterexamples and the
incremental behaviour. The generalization avoids the explicit
enumeration of the counterexamples, while the incrementality
allows us to completely reuse all the clauses learned by IC3
across different safety checks.

Therefore, IC3 is used to prove that Sρ |= P . If it is
successful (recall that in the SMT extension, the problem
is undecidable), we can conclude that ρ is a set of feasible
parameters and, in particular, is optimal. Instead, if there exists
a set of parameters such that S 6|= P , IC3 will might find
a counterexample to P . The counterexample is found in the
blocking phase as a sequence π := (s0, 0), . . . , (sn, n), where
s0 |= I ′, sn |= ¬P and for 0 < i < n − 1, si ∧ T ′ |= si+1.
Possibly, π does not represent a single path of the system that
reaches a violation, but a set of paths that reach ¬P . This is an
intrisic feature of IC3, which generalizes the counterexamples
to induction found in the blocking phase, trying to block set
of states rater than a single state. The state so represents a
set of states that will eventually reach ¬P . Thus, we compute
from s0 a set of bad parameters βso(U) that will eventually
reach sn: βso(U) := ∃X.so(U,X). We rely on a quantifier
elimination procedure to obtain a quantifier-free formula for
βso .

The algorithm refines its conjecture about the unfeasible
parameters of the system. Let β′ := β∨βso and ρ′ := ρ∧¬βso
be the new approximations of unfeasible and feasible regions
of parameters. We have to prove that Sρ′ |= P . We perform the
verification incrementally, reusing all the frames of IC3. Since
ρ′ := ρ ∧ ¬βso , we have that Sρ′ = 〈X ∪ P, Iρ ∧ ¬βso , Tρ〉.2
Thus, we incrementally encode Sρ′ strengthening the initial
condition and the transition relation used in the algorithm, and
also strengthening the first frame kept by the IC3 algorithm
(i.e. F0 := F0∧¬(βso)). The strengthening of F0 removes the
state so from I (possibly blocking also other bad states).

Since Sρ is an overapproximation of Sρ′ , the invariant
mantained by IC3 (i.e. F0 = I , Fi |= Fi+1, Fi |= P and
Fi(X) ∧ T (X,X ′) |= Fi+1(X

′)) also holds for the new
problem Sρ′ |= P .

From this point, we rely on the usual behaviour of IC3,
which tries to block (s1, 1) with the strengthened frame F0.
The algorithm terminates if either P is proved or the F0

becomes unsatisfiable, showing that ρ is empty.

2We also add ¬βso also to Tρ, since it is an inductive invariant of Sρ′ .

bool PARAMIC3 (U , I , T , P):
1. β(U) = ⊥ # underapproximation of the unfeasible parameters
2. trace = [I] # first elem of trace is init formula
3. trace.push() # add a new frame to the trace
4. while True:

blocking phase
5. while there exists a cube c s.t. trace.last() ∧ T ∧ c is satisfiable

and c |= ¬P :
6. recursively block the pair (c, trace.size()− 1)

7. if a pair (p, 0) is generated:
8. βp = ∃X.p(U,X)

9. β := β ∨ βp.
10. I := I ∧ ¬βp and T := T ∧ ¬βp .
11. add ¬βp to trace[0].
12. remove (p, 0) from the set of states to be blocked.
13. if I |= ⊥ # the initial states are empty
14. return ⊥

propagation phase
15. trace.push()
16. for i = 1 to trace.size()− 1:
17. for each clause c ∈ trace[i]:
18. if trace[i] ∧ c ∧ T ∧ ¬c′ is unsatisfiable:
19. add c to trace[i+1]
20. if trace[i] == trace[i+1]:
21. return ¬β # P proved, return good params region

Fig. 1. High-level description of PARAMIC3. The bold and red text shows
the code which differ from the IC3 algorithm used for verification.

We show the parameter synthesis algorithm PARAMIC3 in the
Figure 1, highlighting in red the modifications to the original
IC3.

Theorem 1: Given a parametric transition
system S = 〈U,X, I, T 〉 and a formula P (X),
ρ(U) := PARAMIC3(U, I, T, P) is the optimal set of
feasible parameter valuations.

C. Optimizations

We presented a version of the algorithm which computes
a region of bad states βso only from the initial states of
π := (s0, 0), . . . , (sn, n). However, this is only one of the
possible choices, since more general regions of bad parameters
can be found considering each si in π. In fact, βso is one of the
extreme cases, while the other one is βn(U) := ∃X.(BMCn),
which encodes the set of all the parameters that may reach
¬P in n steps, where BMCn denotes I0 ∧

∧n−1
i=0 T

i ∧ ¬Pn.
However, the cost of eliminating the quantifiers grows as
well, and it might in fact become impractical. In principle,
one may consider the intermediate cases βsi (that is, the
reachability of one of the intermediate states si in π) to trade
the generality of the result with the cost of the quantifier
elimination. Furthermore, we notice that for soundness we
do not need the precise set βsi , but we can consider its
under-approximations, since this still guarantees to remove
only bad parameters valuations. As an advantage, in this case
the quantifier elimination problems are easier to solve and
are more general than βso . In practice, we use an heuristic
which tries to combine the precise and the under-approximated
approach, enabling us to find a trade-off between generality

and the cost of quantifier elimination. The heuristic that we
use is described in the next Section.

IV. RELATED WORKS

The IC3 [4] algorithm was first proposed to prove safety
property for finite-state transition systems. Several approaches
adapted the original algorithm to deal with infinite-state sys-
tems [6], [11], [12].

The works presented in [6], [11] may be used as backends
to synthesize the parameters via reachability. However, they
need to perform a quantifier elimination step on an entire path
and they will not be able to exploit the information discovered
by IC3 while finding violations to the property. Instead, [12]
cannot be used as a reachability backends, since it is restricted
to timed automata without parameters.

The parameter synthesis for infinite-state transition systems
can be solved combining a reachability algorithm with a
quantifier elimination procedure, as proposed by [8]. While
the approach was proposed in the context of parametric
timed automata, it may applied to infinite-state systems. Our
approach follows the same general idea, which is iteratively
find the unfeasible regions of parameters. However, a key
difference is in the computation of a set of bad region with the
quantifier elimination procedure, since we apply the quantifier
elimination to a set of states and not to a set of traces. The
approach proposed in [5] deals with infinite-state systems
with an unbounded number of processes and several kind
of properties, like mutual exclusion and deadlock detection.
While this setting is more general than ours, it does not
synthesize the entire region of parameters, but it instantiates
the values of the parameters for a given template.

Other works [10], [13], [9], [8], [1], [2] synthesize parame-
ters for real-time and hybrid systems. Tools like HYTECH [10],
TREX [3] or RED [13] synthesize the parameters computing
the reachable states of the system. All these techniques are
precise, but they are forced to compute the entire set of
reachable states, which may be unfeasible in several cases.
The technique proposed by Frehse [9] handles linear hybrid
automata, using an approach similar to [8]. The approach
is not precise and underapproximates the region of feasible
parameters. Instead, we find the precise region of parameters.
Finally, the tools IMITATOR [1] and HYMITATOR [2],
which respectively handle timed and hybrid systems, solve a
different but related problem to parameter synthesis. Given a
parameter valuation, they compute all the parameter values that
induce the same set of discrete traces as the given parameter
valuation. This approach requires an initial assignments for the
parameters and in general it will not find the maximum region
of feasible parameters. We stress that our approach is not
specific to timed and hybrid automata, but it may be applied to
every infinite-state transition systems expressed using Linear
Rational Arithmetic.

V. EXPERIMENTS

We have implemented the algorithm described in the previ-
ous section on top of the fully symbolic SMT-based IC3 of

[6]. The tool uses MATHSAT [7] as backend SMT engine, and
works on transition systems with linear arithmetic constraints.
Evaluation. Our evaluation consists of three parts. In the
first, we compare our implementation (called PARAMIC3 in
what follows) with the approach described in [8], in order
to evaluate the viability of our technique when compared to
other SMT-based solutions. For this, we have implemented
the algorithm described in [8] using our “regular” SMT-
based IC3 implementation as the backend engine used for
reachability checking. In what follows, we call this imple-
mentation ITERATIVE-BLOCK-PATH(IC3). We remark that the tool
of [8] was based only on Bounded Model Checking (BMC),
and exploited domain-specific information for computing the
maximum needed bound, which is not available in our more
general context.

In the second part, we evaluate the effectiveness of the
optimizations described in the previous section, by comparing
the default heuristic used by PARAMIC3, using both the full
counterexample path π and its initial state (s0, 0) for blocking
bad regions of parameters, with the basic strategy using only
(s0, 0) (called PARAMIC3-basic in the following). In particular,
the default heuristic used by PARAMIC3 works as follows. At
the beginning, only initial states (s0, 0) of counterexample
paths are used to block bad regions of parameters. If the
algorithm starts enumerating too many bad regions, it starts
exploiting also full paths π, by computing the bad region
βπk (U) = ∃X.BMCπk , where k is the length of π, and BMCπk
is the formula encoding all the counterexample traces of length
k where the values for the Boolean variables are the same as
in π, similarly to what is done in [8]. The computation of βπk
is aborted if it becomes too expensive,3 in order to control the
tradeoff between the quality of the obtained bad region and
the cost of performing quantifier elimination.

Finally, in the third part of our evaluation, we compare
PARAMIC3 against RED [13], a state-of-the-art tool for param-
eter synthesis for linear-hybrid automata.
Benchmarks. We have selected benchmarks used in previous
work on parameter synthesis for hybrid systems. Most of
them come from the suite of RED. We have a total of 92
instances from 13 different families. All the instances, the
scripts and the tools used for reproducing our experiments are
available at http://es.fbk.eu/people/mover/fmcad13.tar.gz. For the
first two parts of our evaluation, we have experimented with
two different ways of encoding linear hybrid automata into
symbolic transition systems, resulting in a set of 192 instances.
For the comparison with RED, we picked the encoding giving
the best overall performance for PARAMIC3.
Results. We have run our experiments on a cluster of Linux
machines with a 2.27GHz Xeon CPU, using a timeout of 600
seconds and a memory limit of 3Gb for each instance. The
results are shown in Figures 2–4. From the plots, we can
make the following observations. (i) Our new algorithm is
clearly superior to the technique of [8], both in number of

3We currently use a cutoff value on the number of elementary operations
in the quantifier elimination module of MATHSAT for this.

IT
E

R
A

T
IV

E
-B

L
O

C
K

-P
A

T
H

(I
C

3)

 1

 10

 100

 1000

 1 10 100 1000

PARAMIC3

Fig. 2. Comparison between PARAMIC3
and ITERATIVE-BLOCK-PATH(IC3).

PA
R

A
M

IC
3-

ba
si

c

 1

 10

 100

 1000

 1 10 100 1000

PARAMIC3

Fig. 3. Comparison between PARAMIC3
and PARAMIC3-basic.

R
E

D

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

PARAMIC3

Fig. 4. Comparison between PARAMIC3
and RED.

completed instances and in execution time. Overall, PARAMIC3
successfully solves 5 more instances than ITERATIVE-BLOCK-
PATH(IC3), and it is almost always faster. We remark that both
algorithms use the same implementation of IC3 as backend,
run with the same options. (ii) Our heuristic for using full
counterexample paths π for blocking bad regions of parameters
pays off for harder problems. With it, PARAMIC3 solves 6 more
instances which were previously out of reach, without any
overhead for the other instances. (iii) The comparison with
RED shows that our technique is very promising. Although
there is no clear winner, there are more instances for which
PARAMIC3 outperforms RED than the converse. In general, the
two tools seem to be somewhat complementary. We remark
that RED is specialized for timed and linear-hybrid automata
and that most of the benchmarks we used come from its suite,
whereas PARAMIC3 works for arbitrary transition systems and
it is not tuned for linear hybrid systems in any way.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm based on IC3 for synthesizing
an optimal region of parameter valuations guaranteeing the
satisfaction of an invariant property. The algorithm exploits the
features of IC3 to incrementally remove sets of bad parameter
valuations and to reduce the cost of expensive quantifier elimi-
nation operations by performing them on small formulas. Our
experimental results show that the new synthesis algorithm
performs better than similar SMT-based techniques and is
complementary to other techniques based on the computation
of the reachable states. In the future, we plan to improve the
algorithm by better exploiting the structure of the problem, to
evaluate it in other domains such as software, and to apply it
in the context of modular component-based verification.

REFERENCES

[1] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat.
IMITATOR 2.5: A tool for analyzing robustness in scheduling problems.
In FM, pages 33–36, 2012.

[2] Étienne André and Ulrich Kühne. Parametric analysis of hybrid systems
using HyMITATOR. In iFM, pages 16–19, 2012.

[3] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX:
A tool for reachability analysis of complex systems. In CAV, pages
368–372, 2001.

[4] Aaron R. Bradley. Sat-based model checking without unrolling. In
VMCAI, pages 70–87, 2011.

[5] Roberto Bruttomesso, Alessandro Carioni, Silvio Ghilardi, and Silvio
Ranise. Automated analysis of parametric timing-based mutual exclu-
sion algorithms. In NASA Formal Methods, pages 279–294, 2012.

[6] Alessandro Cimatti and Alberto Griggio. Software Model Checking via
IC3. In CAV, pages 277–293, 2012.

[7] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto
Sebastiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott
Smolka, editors, TACAS, volume 7795 of LNCS. Springer, 2013.

[8] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic
computation of schedulability regions using parametric timed automata.
In RTSS. IEEE Computer Society, 2008.

[9] Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A
counterexample-guided approach to parameter synthesis for linear hybrid
automata. In HSCC, pages 187–200, 2008.

[10] Thomas A. Henzinger and Pei-Hsin Ho. Hytech: The cornell hybrid
technology tool. In Hybrid Systems, pages 265–293, 1994.

[11] Krystof Hoder and Nikolaj Bjørner. Generalized property directed
reachability. In SAT, pages 157–171, 2012.

[12] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Smt-based
induction methods for timed systems. In FORMATS, pages 171–187,
2012.

[13] Farn Wang. Symbolic parametric safety analysis of linear hybrid systems
with bdd-like data-structures. IEEE Trans. Software Eng., 31(1):38–51,
2005.

APPENDIX

We prove Theorem 1, which states that the region of param-
eters ρ found by PARAMIC3 is optimal (and thus, correct). The
proof is by induction on the number of iterations of PARAMIC3.
The proof shows that if the algorithm terminates, it returns the
optimal region of parameters.

Consider the first iteration of the algorithm.
Suppose we prove Sρ |= P . Then, we know that there are

no bad parameter valuations such that Sρ is not safe. Also,
ρ = > is the optimal parameter region.

Instead, suppose we find π = s0; . . . ; sn, a counterexample
to ST |= P . The counterexample π found by IC3 is such
that for each state u in s0 there exists a path u0, . . . , un,
where un |= ¬P . We compute the set of bad parameters
βs0(U) := ∃X.s0(U,X). From π, we know that for all
parameter valuations γ ∈ βso , there exist a state u0 in s0
(i.e. u0 |= s0) and a path u0; . . . ;un such that γ |= u0 and
un |= ¬P . Thus, Sργ 6|= P for all γ ∈ βs0. Intuitively, it
means that PARAMIC3 only removes valuations of unfeasible
parameters.

The new under-approximation of bad parameters is β′ :=
β(s0), while the over-approximation of the good parameters is
ρ′ := ρ∧¬β(so). We consider the transition system Sρ′ and the
new problem Sρ′ |= P . Then, the algorithm set the following
variables (here, we use the primed notation to refer to the
value of the variables after the assignment): I ′ := I ∧¬β(so),
T ′ := T ∧ ¬β(s0), F ′0 := I ∧ ¬β(so). The invariants on the
IC3 traces (the one presented in the Subection II-C) holds for
checking the problem Sρ′ |= P :
• F ′0 = Iρ′ : it holds, since F ′0 := I ∧ ¬β(so) = Iρ′ ;
• F ′i |= Fi+1: it holds, since F ′0 |= F1;
• F ′0 |= F1 and for 1 ≤ i ≤ n, Fi(X) ∧ Tρ′(X,X ′) |=
Fi+1(X

′).
Consider F ′0(X) ∧ Tρ′(X,X ′) |= Fi+1(X

′).
We have to prove that F ′0(X) ∧ Tρ′(X,X

′) ∧
¬Fi+1(X

′) |= ⊥. By hypothesis, we know that F0(X)∧
Tρ(X,X

′) ∧ ¬Fi+1(X
′) |= ⊥. Suppose there exists a

model µ such that µ |= F ′0(X)∧Tρ′(X,X ′)∧¬Fi+1(X
′).

Recall that F ′0(X)∧Tρ′(X,X ′)∧¬Fi+1(X
′) is F0(X)∧

(¬βs0) ∧ Tρ(X,X ′) ∧ (¬βs0) ∧ ¬Fi+1(X
′). Thus, µ |=

F0(X) ∧ Tρ(X,X
′) ∧ ¬Fi+1(X

′), contraddicting the
hypothesis.
By a similar reasoning, we can prove that Fi(X) ∧
Tρ′(X,X

′) |= Fi+1(X
′) holds, for 1 ≤ i ≤ n.

• for all i < k, Fi |= P : it holds, since F ′0 |= P .
Now, suppose we are at the n− th iteration, where ρn and

βn are the approximations of good and bad parameters found
so far.
• Suppose we prove Sρn |= P . Thus, we proved that ρn is

a region of good parameters.
Note that, by induction every bad region found by
PARAMIC3 β1∧ . . . βn contains only unfeasible parameter
valuations and ρn := ¬(β1∨. . .∨βn). Thus, ρn is optimal.

• Instead, suppose we still find a counterexample π =
s0; . . . ; sn. We compute β(s0), which is a set of bad

parameter valuations for Sρn . We can prove that β(s0)
only contains valuations for “bad” parameters applying
the same reasoning done in the first iteration. Note that,
since Sρn under-approximate S>, β(s0) is bad region also
for the parametric transition system.
We have that Sρn+1 = Sρn ∧ (¬β(s0)). With a resoning
similar to the one that we did in the fist iteration case, we
can prove that the invariant on the frames of IC3 holds
for the model checking problem Sρn+1

|= P .

