
From Electrical Switched Networks to Hybrid Automata
(Extended Version)

Alessandro Cimatti1, Sergio Mover2, and Mirko Sessa1,3

1 Fondazione Bruno Kessler, Trento, IT, {cimatti,sessa}@fbk.eu
2 University of Colorado at Boulder, sergio.mover@colorado.edu

3 University of Trento, Trento, IT

Abstract. In this paper, we propose a novel symbolic approach to automatically
synthesize a Hybrid Automaton (HA) from a switched electrical network. The in-
put network consists of a set of physical components interconnected according to
some reconfigurable network topology. The underlying model defines a local dy-
namics for each component in terms of a Differential-Algebraic Equation (DAE),
and a set of network topologies by means of discrete switches. Each switch con-
figuration induces a different topology, where the behavior of the system is a
Hybrid Differential-Algebraic Equations.
Two relevant problems for these networks are validation and reformulation. The
first consists of determining if the network admits an Ordinary Differential Equa-
tions (ODE) that describes its dynamics; the second consists of obtaining such
ODE from the initial DAE. This step is a key enabler to use existing formal veri-
fication tools that can cope with ODEs but not with DAEs.
Since the number of network topologies is exponential in the number of switches,
first, we propose a technique based on Satisfiability Modulo Theories (SMT) that
can solve the validation problem symbolically, avoiding the explicit enumeration
of the topologies. Then, we show an SMT-based algorithm that reformulates the
network into a symbolic HA. The algorithm avoids to explicitly enumerate the
topologies clustering them by equivalent continuous dynamics.
We implemented the approach with several optimizations and we compared it
with the explicit enumeration of configurations. The results demonstrate the scal-
ability of our technique.

1 Introduction

Many practical systems feature emerging behaviors from the complex interactions of
physical components, that are interconnected according to some reconfigurable topol-
ogy. Typical examples include hydraulics [25] and electrical power supply networks [22].
The components interact by exchanging energy along the network branches, in a bidi-
rectional fashion, that results in a relational, global model, that depends on the specific
system configuration (or mode).

Kirchhoff Networks [13] are a well-known and powerful framework for component-
based physical modeling, that allows to cover power-conserving network rules. Dedi-
cated analysis methods, devised for “single-mode” networks, support the validation of
some basic sanity properties (e.g. absence of VC-loops, or IL cutsets [23]). Following

Fig. 1. Wheel Braking Systems (WBS) with N braking lines.

the Electronic-Hydraulic analogy [2], it is also possible to analyze interesting classes of
hydraulic circuits, such as the WBS in Figure 1.

Unfortunately, dynamic reconfiguration yields networks that are associated with a
potentially exponential number of modes. Consider, for example, the simple electrical
circuit in Figure 2: depending on the status of the switches and fuses, sixteen configu-
rations are possible, each of which is associated with a suitable set of differential equa-
tions. Similar considerations apply, on a larger scale, to the hydraulic circuit from [25]
in Figure 1. In this paper, we tackle two key problems. The network validation problem
consists of showing that the dynamics of the network can be expressible in form of an
ODE (in order for it to be amenable to formal verification), and that all the output vari-
ables (i.e. variables that should be functionally represented by the state of the network)
can be uniquely determined. The network reformulation problem consists of converting
the network into an equivalent hybrid automaton, in order to enable functional verifica-
tion of the network. The challenge lies in the fact that, for each discrete configuration,
the dynamics of the network is defined by a Differential-Algebraic Equation (DAE).
However, the available tools expect an Ordinary Differential Equation (ODE). Although
solving the problem for a fixed configuration is rather simple, given a configuration of
the switches, the number of configurations is exponential in the number of switches.
Thus, an enumerative approach is hardly feasible: one would have to analyze all the
possible modes, to rule out the ones that are deemed unfeasible and build a suitable
equational model for each of the remaining modes. In practice, such an approach is not
feasible, for two main reasons. First, a manual approach is an extremely tedious and
error prone task. Second, an enumerative approach may results in an enormous model,
that is hardly manageable for verification tools. Such an enumerative approach is in fact
applied in [21], to the modeling of a few two-switches circuit.

In this work, we discuss how to automatically reformulate a Linear Electrical Kirch-
hoff Network into the corresponding Hybrid Automaton with ODE continuous dynam-
ics. We propose a symbolic approach to the network validation problem, and a symbolic
algorithm for the reformulation problem. The idea is to aggregate the discrete modes
that share the same dynamics, with different variants in the computation. This results in
a more efficient reformulation, and a more compact Hybrid Automaton.

The approach is experimentally evaluated on several electrical and hydraulic bench-
marks, where we carry out the validation, and compare (the variants of) the proposed

symbolic reformulation approach with its enumerative counterpart. The results demon-
strate a much greater scalability of the symbolic approach. We also discuss the applica-
tion of the proposed approach to some benchmarks in the literature [15, 21].

−
+Vs

R0 S1 F1 R1
C1

S2 F2 R2
C2

Fig. 2. Switched RC Network.

The paper is organized as follows: In Sec-
tion 2 we describe some background. In Section 3
we formally define the problem at hand. In Sec-
tion 4 we describe the validation routine, and in
Section 5 we describe the reformulation meth-
ods. In Section 6 we describe the related work,
and in Section 7 we experimentally evaluate the
proposed approach. In Section 8 we draw some
conclusions and promising research directions. In
Appendix we work out a motivating example, re-
port the proofs of the theorems, and present some
additional experimental results.

2 Background

Notation. We use the standard notions of theory, satisfiability, validity, and logical con-
sequence. We restrict to formulas interpreted with the Theory of Linear Real Arithmetic
(LRA) [4].

Given a formula in first-order logic ψ and a set of variables X , we write ψ(X) to
denote that X is the set of free variables in ψ. We write ϕ |=T ψ to denote that the
formula ψ is a logical consequence of ϕ in the theory T ; when clear from context, we
omit T and simply write ϕ |= ψ. An assignment µ for a set of variables X is the set
{x 7→ c | x ∈ X and c is a constant}, µ|X is the projection of all the assignments in µ
only to variables contained in X , and µ(x) is the value assigned to x in µ. We denote
with |X| the cardinality of the set X . Given a set of real variables X , we will use the
the notation X to refer to the vector that contains all the variables in X ordered in a
lexicographic order. If X is a set of variables, then X ′ and Ẋ are the sets obtained by
replacing each element x with its primed and dotted version respectively.

Hybrid Automata. Hybrid automata (HA) [12] represent a system with continuous
and discrete dynamics. We use a symbolic representation of hybrid automata, where
the discrete locations and transitions are represented symbolically [8].

A Hybrid automaton is a tupleH = 〈D,R, Init, Invar, Trans, F low〉where 1)D
is the set of discrete variables; 2) R is the set of continuous variables; 3) Init(D,R)
represents the set of initial states; 4) Invar(D,R) represents the set of invariant states;
5) Trans(D,R,D′, R′) represents the set of discrete transitions; 6) Flow(D, Ṙ,R)
represents the flow condition. We assume that all the formulas Init, Invar, Trans
and Flow are quantifier-free and linear. We assume Invar to be of the form ψ(D) →∧
p∈P p(R), where p ∈ P is a predicate, to ensure the convexity of the invariants. We

assume Flow to be of the form ψ(D)→ ∧
p∈P p(R, Ṙ), where p ∈ P is an equality.

In the above definition, Flow may either define a system of Differential-Algebraic
Equations (DAEs) or Ordinary Differential Equations (ODEs). We say that the automa-

Component Constitutive relation Xi Ui Yi Constants
Voltage source vi = Vs ∅ {vi} {ii, v+i , v

−
i } Vs

Current source ii = Is ∅ {ii} {vi, v+i , v
−
i } Is

Resistor vi = R ii ∅ ∅ {ii, vi, v+i , v
−
i } R

Capacitor ii = C v̇i {vi} ∅ {ii, v+i , v
−
i } C

Inductor vi = L i̇i {ii} ∅ {vi, v+i , v
−
i } L

Ground v+i = 0 ∅ ∅ {ii, v+i }

Table 1. Constitutive relations and variables of continuous components.

ton has an ODE dynamics if, for each assignment µ to D, the conjunct of ψ(D) →∧
p∈P p(R, Ṙ) that holds for µ is a system of ODEs. Otherwise, the automaton has a

DAE dynamics.
A state of a hybrid automaton H is an assignment s to the variables D ∪ R. In-

formally, a run of the automaton is a sequence of states such that the first state is in
the initial states, every state belongs to the invariant states, and each pair of consecu-
tive states either satisfies a discrete transition or follows the solution of the differential
equations described in the flow condition. The semantics of the HA is provided in terms
of the runs that it accepts.

Electrical Networks. An (non-switched) electrical network is formed by the connec-
tion of a set of (continuous) components. Without loss of generality, we consider only
components with two terminals. A continuous component ei defines two quantities, the
voltage (difference of potential) across the two terminals of the component, and the
current that flows through the component. We denote with ii(t) and vi(t) the current
and the voltage of ei. vi(t) and ii(t) change continuously in time according to a con-
stitutive relation, ψi, a Differential-Algebraic Equation among vi(t), ii(t), and their
derivatives v̇i, i̇i. Furthermore, for each component ei we consider the variables v−i and
v+i , that represent the value of the potential at the two terminals of ei. These variables
are connected to vi through the voltage equation vi = v+i − v−i .

We denote with Vi the set of variables of ei. We further partition Vi into the follow-
ing subsets: 1)Xi := {x | ẋ appears in ψi} is the set of state variables (their derivatives
appear in the constitutive relation of ei); 2) Ui is the set of input variables, which de-
pends on the component type; 3) Yi is the set of output variables, which depends on
the component type. The sets Xi, Ui, Yi are disjoint, and Vi = Xi ∪ Ui ∪ Yi. Ẋi is
the set of first derivatives of Xi. In Table 1 we report the constitutive relations for the
electrical components considered in this paper and their sets of variables. Furthermore,
we say that a component is active if it has at least a state or input variable, and passive
otherwise.

The connection of components terminals is represented by a directed graph: an ori-
ented edge represents a component and a node represents the connection of components
terminals. As usual, the orientation of the edges is chosen arbitrarily assuming a refer-
ence direction for the current.

Definition 1 (Electrical network). An electrical network [5, 24] is a directed graph
G = 〈N,E, η〉, where 1) N is a set of nodes; 2) E is a set of components; 3) η : E 7→
N ×N defines the directed edges between nodes.

Let Einn = {e | e ∈ E and (n1, n) = η(e)} and Eoutn = {e | e ∈ E and (n, n1) =
η(e)} be the sets of incoming and outgoing edges of the node n. Additionally, let
Pn =

⋃
ei∈Ein

n
v+i ∪

⋃
ei∈Eout

n
v−i denote the set of all the potentials of the compo-

nents incident on the node n, considering also the direction sign imposed by the edge
orientation. The connection of the components is described by the Kirchhoff Current
Law (KCL) and the Kirchhoff Voltage Law (KV L):

KCLG :=
⋃
n∈N

 ∑
ci∈Ein

n

ii −
∑

ci∈Eout
n

ii = 0

 KV LG :=
⋃
n∈N

⋃
p1,p2∈Pn

(p1 = p2)

Definition 2 (Differential-Algebraic Equation of a network). Given a network G =
〈N,E, η〉, its associated DAE, called DAEG, is defined by the set of constitutive equa-
tions {ψi | ei ∈ E}, the set of voltage equations vi = v+i −v−i , and the sets of algebraic
equations KCLG and KV LG.

While there exist several equivalent DAE systems to represent an electrical network,
we basically use the one obtained applying the Node Tableau Analysis (NTA) [24].

We extend the notation used to specify the component’s variables and their parti-
tions to a network G. Hence, we have the sets VG :=

⋃
ei∈E Vi, XG :=

⋃
ei∈E Xi,

UG :=
⋃
ei∈E Ui, YG :=

⋃
ei∈E Yi. A state of the network is given by an assignment µ

to all the variables VG. A state µ is a consistent initial value for DAEG if DAEG has a
solution for µ (i.e. if replacing all the variables with the assigned constants in µ the re-
sulting system of algebraic equations has a solution). A variable y ∈ YG is underdeter-
mined if there exist two solutions µ′ and µ′′ ofDAEG such that µ′|VG\{y} = µ′′|VG\{y}
and µ′(y) 6= µ′′(y).

Definition 3 (Electrical network semantics). The semantics of the network is defined
by its associated DAEG. We say that there exists a trajectory from a state µ to a state
µ′ if µ is a consistent initial value and there exists a continuously differentiable function
f : (0, t] → VG such that: f(0) = µ, f(t) = µ′, and for all δ ∈ (0, t], dfdt (δ) and f(δ)
are a solution of DAEG.

Structural analysis for electrical network. Structural analysis for (non-switched)
electrical networks is a standard technique used to determine if it is possible to reformu-
late the DAE into a system of Ordinary Differential Equations (ODEs). In the following,
we will reuse established results from structural analysis. We use the standard definition
of loops and cutset for a graph G. A sequence n0, e0, . . . , nk+1 ∈ N × (E × N)k of
nodes and edges is a loop if there exists a path from n0 to nk+1 (for i ∈ [0, k], either
η(ei) = (ni, ni+1) or η(ei) = (ni+1, ni)), and all the nodes are different, apart from
n0 and nk+1 (for i ∈ [0, k], ni 6= ni+1 and n0 = nk+1). The definition of loop ignores
the edges orientation. We use the standard notion of subgraph, connected graph and
connected component of a graph. If G = 〈N,E, η〉 is a connected graph, K ⊆ E is

a cutset of G if removing K from E results in a disconnected graph, and K is min-
imal (i.e. removing a proper subset of K does not disconnect G). A loop is a V-loop
(resp. VC-loop) if the only components on the edges are voltage sources (resp. voltage
sources and capacitors). A cutset is an I-cutset (resp. IL-cutset) if the only components
in the cutset are current sources (resp. current sources and inductors).

Theorem 1 (Existence of an ODE reformulation (Theorem 6.3 from [24])). Given
a connected electrical network G, the network has neither VC-loops nor IL-cutsets if
and only if its associated DAEG can be reformulated into the ODE model:

ẊG = AXG +BUG YG = CXG +DUG (1)

where A ∈ R|XG|×|XG|, B ∈ R|XG|×|UG|, C ∈ R|YG|×|XG|, D ∈ R|YG|×|UG|.

The goal of the reformulation is to get the ODE, instead of a DAE, which are more
amenable for simulation and verification.

The reformulation of DAEG as an ODE can be performed applying the Superpo-
sition Theorem [26]. The theorem tells that the response (the voltage and the current)
of a component of a linear circuit is equal to the sum of the responses caused by each
source acting alone (with all the other sources off). Turning on/off a voltage source
means setting its voltage to 1/0 (the value for on must be different from 0), while turn-
ing on/off a current source means setting its current to 1/0. Capacitors and inductors
are considered sources (of voltage and current respectively). The reformulation works
by determining the contribution of each source (including inductors and capacitors) on
the response (current or voltage) of each other component. Formally, for a component
ei with a reformulated variable w, the reformulation works determining the coefficients
aw,z such that:

w =
∑
z∈(XG∪UG) aw,zz (2)

where a coefficient aw,z ∈ R represents the effect of the source variable z on the refor-
mulated variablew. aw,z is obtained considering only the effect of z, while disregarding
the effects of the other sources. In practice, aw,z is the assignment to the variable w in
the system DAEG constrained by adding the constraints z = 1 and l = 0, for all the
l ∈ XG ∪ UG \ {z}.

Switched Electrical Networks. A switch ei is a component with two discrete states,
open and closed. The state of the switch is represented with the Boolean variablemi (i.e.
mi is true iff the switch is open). LetMi := {mi} be the set of discrete variables, Ci :=
Xi∪Ui∪Yi the set of continuous variables and Vi =Mi∪Ci the set of all the variables

of a switch. The constitutive relation of a switch is ψi :=

{
ii = 0 if mi

vi = 0 otherwise
(i.e. the

switch disconnects or connects its terminals when it is open or closed). The switching
behavior is defined by an invariant and a guard condition, invari : 2Mi → φ(Ci)
and guardi : 2Mi → φ(Ci). invari defines the invariant condition of the switch that
must hold in each discrete state, while guardi defines the condition that must hold in a
discrete state to allow the transition to the other state.

Definition 4 (Switched Electrical Network). A switched electrical network G =
〈N,E, η〉 is an electrical network where E may include also switches.

We extend the set of variables defined for a component to the switched network in
the obvious way. Also, let Em ⊆ E be the subset of all the switches components in E.
We refer to each possible (complete) assignment µ to the discrete variables MG as a
discrete configuration of the network, and we denote with 2MG the set of all the pos-
sible discrete configurations. Notice that, every different discrete configuration of the
switches induces a (non-switched) electrical network. In the following, given a discrete
configuration µ, we refer to DAEG(µ) as the DAE associated to the (non-switched)
electrical network induced by µ.

Definition 5 (Valid switched electrical network.). We say that a switched electrical
network G is valid, if, for all possible discrete configurations µ ∈ 2MG , DAEG(µ) can
be reformulated into an ODE.

In other words, a switched electrical network G is valid, if, for all possible discrete
configurations µ ∈ 2MG :

(i) DAEG(µ) has neither VC-loops nor IL-cutsets.
(ii) All the output variables YG in DAEG(µ) are not underdetermined.

Definition 6 (Valid switched electrical network semantics.). We define the semantics
of a valid switched electrical network G = 〈N,E, η〉 as the hybrid automaton HG =
〈D,R, Init, Invar, Trans, F low〉where 1)D :=MG; 2)R := CG; 3) Init(D,R) :=
True; 4) Invar(D,R) :=

∧
ei∈Em

(mi → invari({mi})) ∧ (¬mi → invari(∅)); 5)
Trans(D,R,D′, R′) := (

∨
ei∈Em

(mi ∧ ¬m′i ∧ guardi({mi})) ∨ (¬mi ∧m′i∧
guardi(∅)) ∧ (

∧
x∈XG

x′ = x); 6) Flow(D, Ṙ,R) := DAEG;

Notice that the flow conditions of the automaton that defines the semantic of the network
still define a Differential-Algebraic Equation (DAE) and not an Ordinary Differential
Equation (ODE).

3 Problem definition

In this paper, we address the following problems.

Definition 7 (Network validation problem). The network validation problem consists
of determining if a switched electrical network is valid. Additionally, if it is not the case,
the problem also consists of finding the set of the discrete configurations that are not
valid.

A valid network can be encoded into a symbolic hybrid automaton where Flow
defines a system of ODEs for each configuration.

The hybrid automaton HG that defines the semantics of the network G (see Defi-
nition 6) is a concise representation of the network. However, no model checking tools
are able to analyze this kind of input (the combined symbolic representation and DAE).
Thus, the problem that must be solved to enable the verification of a switched electrical

network is the reformulation of the electrical switched networkG into a hybrid automa-
ton with an ODE dynamics. Note that this problem extends the reformulation problem
in Theorem 1 from a single DAE to a set of DAEs, one for each discrete configuration
in 2MG .

Definition 8 (Hybrid Automata reformulation). Given a valid switched electrical
network G, the reformulation problem consists of encoding G into a symbolic hybrid
automaton with ODE dynamics.

4 Network Validation

We show how to reduce the validation conditions to a series of SMT checks.

SMT encoding. Given a switched network G = 〈N,E, η〉, we encode the Differential-
Algebraic EquationDAEG defined by the network as a quantifier free-formula in LRA.
This formula will be used both for the validation and the reformulation steps.

The encoding formula predicates over the same variables of the network. We reuse
the same notation for the different sets of variables used for the network G. In the
encoding, we interpret each variable in MG as a Boolean variable and each variable in
XG ∪ UG ∪ YG as a Real variable. The encoding also predicates over the first-order
derivatives of XG, ẊG. We interpret each variable in ẊG as a Real (the semantics
should be clear from the context). The main reason is that both the validation and the
reformulation just consider the algebraic relations defined by the equations, and not
how the variables change as a function of time.

The formulaψDAEG
connects the constitutive relation and voltage equation for each

component ei through the KCL and KV L conditions:

ψDAEG
:=

∧
ei∈E\Esources

(ψi) ∧
∧
ei∈E

(vi = v+i − v−i) ∧ ψKCL ∧ ψKV L

ψKCL :=
∧
n∈N

(
∑

ei∈Ein
n

ii −
∑

ei∈Eout
n

ii = 0) ψKV L :=
∧
n∈N

(
∧

p1∈Pn

(
∧

p2∈Pn

p1 = p2))

Existence of VC-loops or IL-cutsets. As stated in Theorem 1, the DAE of a single
configuration can be reformulated into an ODE if the network G does not have any VC-
loops or any IL-cutsets and if the network is connected. We encode these conditions in
the following formulas.

valz :=∃CG, ẊG.(ψDAEG
∧ z = 1 ∧∧

l∈XG∪UG\{z} l = 0)

val :=
∧
z∈XG∪UG

valz

The formula valz sets to 1 the state or input variable z of an active component (i.e.
voltage sources, current sources, capacitors and inductors), while it keeps all the other
state and input variables to 0. If valz is unsatisfiable for some discrete configuration in
2MG , we have either a VC-loop or an IL-cutset involving z. This is due to theKV L and

the KCL conditions. The first ensures that the sum of the voltages in a loop must be
equal to 0. The latter ensures that the sum of the currents on the components in a cutset
must be 0. For example, consider a configuration µ with a VC-loop that contains the
voltage source ei. The sum of the KV L equations for the loop only contains variables
from XG and UG, and in particular the input variable vi of ei. In the formula valvi we
have that vi = 1, while all the other state and input variables are equal to zero. Thus,
the KV L equation of the loop reduces to 1 = 0, and hence valvi is unsatisfiable for µ.
An analogous reasoning can be done for an IL-cutset and the KCL conditions.

Lemma 1. The formula valvi (resp. valii) is satisfiable for all configurations µ ∈ 2MG

if and only if the switched electrical network G does not have any VC-loops (resp. IL-
cutsets) involving vi (resp. ii).

For lack of space, we provide the proofs in the Appendix C. As a corollary of Lemma 1,
we have that the formula val represents the set of all the configurations that do not have
any VC-loop or IL-cutset. By Theorem 1, each configuration of the network admits a
reformulation if there are no VC-loops or IL-cutsets and the network is connected.

Existence of underdetermined output variables. In a switched network, a configuration
on a switch may induce a topology of the network that is not connected, but is formed
by several connected components (of the graph of the network). The Theorem 1 can
still be applied on each discrete configuration and on each connected component. In
fact, for a network with neither VC-loops nor IL-cutsets, the theorem still guarantees
the existence of the reformulation in terms of the state and input variables for each
connected component of the graph containing at least an active component. We encode
a sufficient condition for the connectedness of the network in the following formula:

und := ∃CG, ẊG.(ψDAEG
∧∧

z∈XG∪UG
(z = 0) ∧∨

y∈YG
(y 6= 0)) (3)

We consider the fact that all the output variables of a graph component are uniquely
determined (i.e. are not underdetermined) by the input and state variables contained in
such component if and only if the component is connected and does not show degener-
ate configurations such as VC-loops or IL-cutsets. The formula encodes that there exists
a y ∈ YG that can have a value different from 0 when all the input and state variables
are 0. If the formula is satisfiable for some configuration µ, then y is underdetermined
in that configuration.

Lemma 2. The formula und is satisfiable for some configuration µ ∈ 2MG if and only
if there exists a variable y ∈ YG that is underdetermined.

As a corollary of Lemma 2, we have that und represents the set of all the configurations
that contain some underdetermined variable.

5 Network reformulation to Hybrid Automaton

5.1 Reformulation algorithm

Given a network G = 〈N,E, η〉, Hr
G = 〈Dr, Rr, Initr, Invarr, T ransr, F lowr〉 is

the reformulated hybrid automaton. Hr
G is defined as the hybrid automaton HG in the

Definition 6, except for Invarr and Flowr. The invariant condition Invarr is given
by Invarr := Invar ∧ InvarrefY , where Invar is the invariant condition of HG, and
InvarrefY represents the reformulation of the output variables YG (see Equation 2).
Flowr represents the ODE dynamics in terms of ẊG, XG, and UG. The goal of the
reformulation process is to synthesize both the Flowr and InvarrefY formulas.

In the following algorithms, we use a standard stack-based interface of an SMT
solver (push, assert, isSat, pop, reset primitives). This allows us, after asserting a for-
mula γ, to set a backtrack point (push), assert another formula β (assert), check the
satisfiability of the conjunction of the asserted formulas (isSat), and restore the state of
the solver (i.e. asserted formulas and learned clauses) at the backtrack point (pop). This
way, the satisfiability problem is solved keeping several learned clauses. Additionally,
we assume to have the primitive getModel, to get a complete satisfying assignment to
the free variables of the formula in the stack, and quantify, to eliminate the quantifiers
present in the formula.

We describe a symbolic approach that groups together the discrete configurations
that share the same ODE system. The algorithm REFORMULATE in Figure 3 reformu-
lates only a subset of variablesW ⊆ ẊG∪YG. The algorithm can be used to reformulate
all the dotted and output variables of the system by setting W = ẊG ∪ YG. However,
we will show how the modularity of REFORMULATE can be used to obtain different,
and usually coarser, partitionings of the discrete configurations.

REFORMULATE takes as input the encoding of the network ψDAEG
, the sets of state

and input variablesXG, UG, and a set of variablesW to be reformulated. The main loop
(line 3) of the algorithm enumerates all the discrete configurations of the network. Ini-
tially, the solver picks a random discrete configuration µ (line 4), and then symbolically
applies the superposition theorem (on the network induced by µ) calling the function
GETCOEFFICIENTS (line 5). The output of GETCOEFFICIENTS is a map of coefficients
F : for a w ∈ W and a z ∈ XG ∪ UG, F (w)(z) ∈ R is the coefficient that was ob-
tained by observing the effect of the source z on the variable w. Then, at line 6, the
function GETEQMODES computes the set of all the equivalent discrete configurations
β. GETEQMODES guarantees that µ′ ∈ β if and only if GETCOEFFICIENTS finds the
same coefficients when called on µ and on µ′ with the same parameters ψDAEG

, XG,
UG and W . Then, at line 7, the algorithm blocks all the discrete configurations repre-
sented in β; this is a key step in the algorithm that prunes a set of discrete configurations
from the search, avoiding their explicit enumeration. Finally, from line 8 to the end of
the loop, REFORMULATE constructs the flow and invariant conditions.

The functions GETCOEFFICIENTS in Figure 6 implements the reformulation by the
superposition theorem. Each execution of the loop at line 3, computes the effect of a
state and input variable on all the variables in W .

The function GETEQMODES, shown in Figure 5, computes the set of configura-
tions equivalent to µ in terms of reformulation. For each state and input variable, the
function re-encodes the superposition conditions (line 4) and additionally encodes the
coefficient constraints for the current discrete configurations µ (line 6). Then, the for-
mula β (line 9) encodes all the discrete configurations that have exactly the same re-
formulation of µ. We also consider an alternative implementation of GETEQMODES,

REFORMULATE (ψDAEG
, XG, UG, W):

1. (FlowW , InvarW) := (True, True)
Tautology over the variables MG

2.solver.assert(
∧

m∈MG
m ∨ ¬m)

3.while solver.isSat():
Get a configuration where FlowW is not defined

4. µ := solver.getModel()
Get the coefficients that contribute to each w ∈W

5. F := GETCOEFFICIENTS (ψDAEG
, XG, UG, W , µ)

Get the modes that have the same dynamic for W
6. β := GETEQMODES (ψDAEG

, XG, UG, W , F)
Block the equivalent modes

7. solver.assert(¬β)
8. (refẊG

, refYG
) := GETREF (XG, UG,W , F)

9. (FlowW , InvarW) := (FlowW ∧ (β → refẊG
), InvarW ∧ (β → refYG

))
10.return (FlowW , InvarW)

Fig. 3. Reformulate a set of variables W .

GETEQMODESMODULAR, that computes the existential quantification independently
for each single conjunct of the formula γ, instead of the whole formula γ.

5.2 All and single variables partitioning

GETREF (XG, UG, W ,F):
1. (refẊG

, refYG
):= (True, True)

2. for each w ∈W :
3. rhsw := 0
4. for each z ∈ XG ∪ UG:
5. rhsw := rhsw + F (w)(z) ∗ z
6. if w ∈ ẊG :
7. refẊG

:= refẊG
∧ w = rhsw

8. else:
9. refYG

:= refYG
∧ w = rhsw

10.return (refẊG
, refYG

)

Fig. 4. Construction of the reformulation
formulas.

The REFORMULATE algorithm allows us to
reformulate sets of variables (i.e. subsets of
ẊG∪YG) instead of all the variables ẊG∪YG.
Thus, it allows us to obtain different kinds of
partitioning of the discrete configurations and
the ordinary differential equations. We define
two reformulation algorithms that obtain dif-
ferent partitioning. The ALLREF algorithm,
shown at the top of Figure 7, first reformu-
lates all the controlled variables XG. Thus, in
this case we obtain sets of discrete configu-
rations that share the same system of ODEs
(a system of equations of the form ẊG =
AXG+BUG). Then, ALLREF reformulates
all the output variables YG independently.

The other algorithm, SINGLEREF (shown in the bottom of Figure 7), instead refor-
mulates all the variables independently.

As a further observation, in practice we do not need to reformulate all the output
variables YG. In fact, we need to reformulate only those variables needed to define the
dynamics of the system (e.g. they may be used in the invariant invari and guardi
conditions of a switch) or the variables that we want to observe.

GETEQMODES (ψDAEG
, XG, UG, W ,F):

1.eqSolver.reset()
2.γ := True
3. for each z ∈ XG ∪ UG:
4. supz := z = 1 ∧

∧
l∈(XG∪UG)\{z} l = 0

5. γF := True
6. for each w ∈W :
7. γF := γF ∧ w = F (w)(z)

8. γ := γ ∧ ∃CG, ẊG.(ψDAEG
∧ γF ∧ supz)

9.β := eqSolver.quantify(γ)
10.return β

Fig. 5. Find the discrete configurations with an
equivalent dynamics for a set of variables W .

GETCOEFFICIENTS (ψDAEG
, XG, UG, W ,µ):

F maps vars in W and XG ∪ UG to real values
1.F :W → (XG ∪ UG)→ R
2.coeffSolver.assert(ψDAEG

∧ µ)
3. for each z ∈ XG ∪ UG:
4. coeffSolver.push()
5. supz := z = 1 ∧

∧
l∈(XG∪UG)\{z} l = 0

6. coeffSolver.assert(supz)
7. µ′ := coeffSolver.getModel()
8. for each w ∈W :

µ′(w) represents the effect of z on w
9. F (w)(z) := µ′(w)
10. coeffSolver.pop()
11.return F

Fig. 6. Computes the superposition coeffi-
cients for a set of variables W .

6 Related work

The solutions to the validation and reformulation problems for electrical networks (with-
out switches) are well known [5, 24]. We differ from these works since we focus on
networks with discrete switches, where the main issue is to cope with the exponential
explosion in the number of discrete configurations. Then, we reuse several techniques
from structural analysis, as the superposition principle [26], but we re-interpret them in
a symbolic setting.

Other works consider also networks with discrete switches. Several approaches [18]
do not consider ideal switches, but model the switch introducing parasitic resistances.
A drawback of this approach is that it requires to determine a priori a set of parameters
(e.g the resistance of the resistor); then, these parameters have the effect to change the
dynamics of the systems, producing as a result an approximation of the intended behav-
ior. Ideal switches have been mainly considered in context of simulation, for example
in [17]. While the focus is often on non-linear dynamics, the problem solved in these
works is to produce a single simulation of the network. In this context, they reformulate
the DAE into an ODE every time the simulator performs a discrete switch. Thus, these
works do not solve the validation and the reformulation problem, since they focus on a
single execution of the system.

Several works focus on the translation from Stateflow/Simulink models to hybrid
automata [1, 16, 19]. We point out that the Simulink modeling is based on a functional
representation of a system where every block is seen as an unidirectional Input-Output
function, thus it is not suitable for a component-based physical modeling that is intrin-
sically bidirectional. There are several works [29] on the formal verification of Analog-
Mixed-Signal (AMS) circuits. Most works focus on non-switched circuits [9,10,15] and
try to solve a reachability problem. They start from the network representation but they
manually encode it as a hybrid automaton. A different approach is considered in [30],
where a non-linear circuit is automatically abstracted and encoded using SMT. We re-

ALLREF (ψDAEG
, XG, UG):

1. (Flowr , InvarrefY) := REFORMULATE (ψDAEG
, XG, UG, ẊG)

2. for each w ∈ YG:
3. (Floww , Invarw) := REFORMULATE (ψDAEG

, XG, UG,{w})
4. (Flowr , InvarrefY) := (Flowr ∧ Floww , InvarrefY ∧ Invarw)
5.return (Flowr , InvarrefY)

SINGLEREF (ψDAEG
, XG, UG):

1. (Flowr , InvarrefY) := (True, True)
2. for each w ∈ ẊG ∪ YG:
3. (Floww , Invarw) := REFORMULATE (ψDAEG

, XG, UG,{w})
4. (Flowr , InvarrefY) := (Flowr ∧ Floww , InvarrefY ∧ Invarw)
5.return (Flowr , InvarrefY)

Fig. 7. Reformulation algorithms with different reformulation strategies.

mark that none of these works solves the validation and reformulation problem for a
switched electrical network.

Finally, our reformulation approach produces a symbolic hybrid automata model
that can be analyzed by model checkers tools like HYBRIDSAL [27] and HYCOMP [6],
using relational abstraction [20, 28], or DREACH [3, 14].

7 Experimental evaluation

The approach was implemented in pySMT [11], a library for SMT formulae manip-
ulation and solving, using MathSat5 [7] for Quantifier Elimination. We evaluated the
effectiveness and the scalability of the symbolic approach in the validation and reformu-
lation problems. The experimental evaluation was run on a 64 bit system with an Intel
Xeon E3-1246 processor at 3.5 GHz and 16GB RAM. The tool and the benchmarks
used in the experiments are available at https://es.fbk.eu/people/sessa/
attachment/FM2016/fm16.tar.bz2

Benchmarks. We consider several classes of benchmarks. The following (Buck, Boost,
Buck-Boost) DC-DC converters are taken from [21].

The Switched RC Network SRCNN is a scalable benchmark obtained from the circuit
of Figure 2 by parameterizing the number of (up to 8) capacitive branches.
The Non Linear Transmission Line (NLTL) depicted below represents a well-known
phenomenon (discretization of propagation) along a transmission line [15]. We param-
eterize the benchmark NLTLN on the number N of (up to 10) pairs of stages.

The Wheel Braking System benchmarks follow the description in the SAE Standard
AIR6110 [25] (see Figure 1). We consider the WBSN benchmarks, parameterized on
the number of (up to 6) braking lines. The WBS consists of a pressure supply line made
of a pump, an accumulator, pipelines and an isolation valve, connected to replicas of
a braking line made of pipelines, distribution valves, fuses and brakes. Following the
Electronic-Hydraulic analogy, the pump is modeled as an ideal constant voltage source,
the pipes as resistors, the accumulator and the brakes as capacitors, the distribution
valves and the fuses as ideal switches, and the isolation valve as a diode.

For each of the scalable benchmarks, the number of discrete configurations grows
exponentially with the problem size, reaching a million of system configurations for the
NLTL10. Additional information are available in the Table 4 in Appendix D.

Validation. We first consider the results of the validation. For the scalable benchmarks,
we report the comparison of three different strategies: the baseline Enum strategy, ex-
plicitly enumerates the system configurations and for each of them validates the induced
DAE; the SyGlo and SyMod strategies apply quantifier elimination (QE) over two differ-
ent SMT encoding of the validation problem. The former tries to minimize the number
of QEs encoding the validation problem into a global SMT formula, the latter tries to
reduce the complexity of the global QE decomposing the global encoding into a modu-
lar sequence of simpler formulas. From the results (SRCN, NLTL, WBS from the left)

we see that the symbolic approaches outperform the enumerative approach at least of
one order of magnitude in all the benchmarks. While the two symbolic approaches
show similar performance on the SRCN, for the WBS and NLTL SyMod accomplishes
the task while SyGlo times out. In general, SyMod performs much better than SyGlo.

The non-scalable benchmarks are validated all within one second, but provide inter-
esting insights. Specifically, the models of the DC-DC converters result in four discrete
configurations, given by the switch S and diode D. The hybrid automata provided in
[21] only contain the two discrete modes S = open,D = closed and S = closed,D =
open. In fact, the validation phase detects (for each converter) two non valid configura-
tions, corresponding to S = open,D = open and S = closed,D = closed, that induce
an IL-cutset and a VC-loop, respectively. These two modes are exactly those excluded
in the manual modeling phase leading to the hybrid automata provided in [21].

Reformulation. In the reformulation phase, for each model, we reformulate all the
derivative variables and only the output variables contained in the invariant and guard
formulas of the system components (e.g. the voltage and current of a diode).

Applying the reformulation phase to the DC-DC converters restricted to only the
two valid configurations S = open,D = closed and S = closed,D = open, we get
two distinct ODEs whose coefficients agree with the dynamics of the converters pro-
vided in [21]. For lack of space, we refer the reader to the Figure 9 in the Appendix D
for further details on the output of the converters reformulation.
For each scalable benchmark, the following plots (SRCN, NLTL, WBS from the left)

show the reformulation time for five different approaches that mix the Enum and Sym-
bolic strategies with different reformulation strategies. Enum-Flat represents the naive
approach that enumerates the system configurations and reformulates the derivative
and output variables as a unique set of variables; the SyGlo-All and the SyMod-All ap-
proaches apply the ALLREF reformulation algorithm; the SyGlo-Single and the SyMod-
Single approaches apply the SINGLEREF algorithm. In general, the two symbolic ap-
proaches outperform the enumerative approach and exhibit similar performance, with
the exception of the SyMod-Single reformulation, that has significant advantage over
the others in the NLTL benchmarks due to its favorable topology. The choice of the
strategy (All vs Single) in the symbolic reformulation affects the amount of discovered
equivalence classes, that is directly correlate with the reformulation time. Additional
details are reported in Figures 10, 11, 12 and Figures 13, 14, 15 in the Appendix D.

8 Conclusion

In this paper we presented a novel, symbolic approach to the validation and reformula-
tion problem of a switched electrical network. The method is able to analyze the validity
conditions of the network, where the dynamics are expressed as Differential-Algebraic
Equations, and to reformulate them in form of a (symbolically represented) Hybrid Au-
tomaton. The proposed approach scales much better than an naive approach based on
the enumerative analysis of the individual configurations, and produces significantly
more compact HA due to the clustering of the equivalent configurations.

In the future, we will explore, amongst other research directions, how the approach
can be generalized to other physical domains (e.g. mechanical) where the conditions
needed for the network validation are different, and to deal with partially underdeter-
mined networks.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow models
to hybrid automata using graph transformations. Electronic Notes in Theoretical Com-
puter Science 109, 43 – 56 (2004), http://www.sciencedirect.com/science/
article/pii/S1571066104052089, proceedings of the Workshop on Graph Trans-
formation and Visual Modelling Techniques (GT-VMT 2004)

2. Akers, A., Gassman, M., Smith, R.: Hydraulic Power System Analysis. Fluid
Power and Control, CRC Press (2006), https://books.google.it/books?id=
Uo9gpXeUoKAC

3. Bae, K., Kong, S., Gao, S.: SMT encoding of hybrid systems in dReal. In: Frehse, G., Al-
thoff, M. (eds.) ARCH14-15. 1st and 2nd International Workshop on Applied veRification
for Continuous and Hybrid Systems. EPiC Series in Computing, vol. 34, pp. 188–195. Easy-
Chair (2015)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability, pp. 825–885 (2009), http://dx.doi.org/10.3233/
978-1-58603-929-5-825

5. Benner, P.: Large-scale networks in engineering and life sciences. Springer, Birkhäuser
Mathematics (2014)

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyCOMP: An SMT-based model checker
for hybrid systems. In: TACAS. pp. 52–67 (2015), http://dx.doi.org/10.1007/
978-3-662-46681-0_4

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: Tools and Algorithms for the Con-
struction and Analysis of Systems: 19th International Conference, TACAS 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, chap. The MathSAT5 SMT Solver, pp. 93–
107. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http://dx.doi.org/10.
1007/978-3-642-36742-7_7

8. Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear hybrid
automata. In: FMCAD. pp. 187–195 (2012), http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6462573

9. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits using hy-
brid system techniques. In: Formal Methods in Computer-Aided Design, 5th International
Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings. pp.
21–36 (2004), http://dx.doi.org/10.1007/978-3-540-30494-4_3

10. Frehse, G., Krogh, B.H., Rutenbar, R.A., Maler, O.: Time domain verification of oscillator
circuit properties. Electr. Notes Theor. Comput. Sci. 153(3), 9–22 (2006), http://dx.
doi.org/10.1016/j.entcs.2006.02.019

11. Gario, M., Micheli, A.: pysmt: a solver-agnostic library for fast prototyping of smt-based
algorithms. In: SMT Workshop (2015)

12. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual IEEE Sympo-
sium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996.
pp. 278–292 (1996), http://dx.doi.org/10.1109/LICS.1996.561342

13. Janschek, K.: Mechatronic systems design: methods, models, concepts. Springer Science &
Business Media (2011)

14. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for hy-
brid systems. In: TACAS. pp. 200–205 (2015), http://dx.doi.org/10.1007/
978-3-662-46681-0_15

15. Lee, H.L., Althoff, M., Hoelldampf, S., Olbrich, M., Barke, E.: Automated generation of
hybrid system models for reachability analysis of nonlinear analog circuits. In: The 20th Asia

and South Pacific Design Automation Conference, ASP-DAC 2015, Chiba, Japan, January
19-22, 2015. pp. 725–730 (2015), http://dx.doi.org/10.1109/ASPDAC.2015.
7059096

16. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and synthesis
from simulink/stateflow models. In: Proceedings of the 14th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, April 12-14,
2011. pp. 317–318 (2011), http://doi.acm.org/10.1145/1967701.1967749

17. Massarini, A., Reggiani, U., Kazimierczuk, M.K.: Analysis of networks with ideal switches
by state equations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 44(8), 692–697 (Aug 1997)

18. Mathworks, T.: Simscape power systems, http://it.mathworks.com/help/
physmod/sps/index.html

19. Minopoli, S., Frehse, G.: SL2SX translator: From simulink to spaceex models. In: Proceed-
ings of the 19th International Conference on Hybrid Systems: Computation and Control,
HSCC 2016, Vienna, Austria, April 12-14, 2016. pp. 93–98 (2016), http://doi.acm.
org/10.1145/2883817.2883826

20. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hy-
brid systems. In: EMSOFT. pp. 14:1–14:10 (2013), http://dx.doi.org/10.1109/
EMSOFT.2013.6658592

21. Nguyen, L.V., Johnson, T.T.: Benchmark: DC-to-DC switched-mode power converters (buck
converters, boost converters, and buck-boost converters). In: Frehse, G., Althoff, M. (eds.)
ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous
and Hybrid Systems. EPiC Series in Computing, vol. 34, pp. 19–24. EasyChair (2015)

22. Nuzzo, P., Xu, M., Ozay, N., Finn, J.B., Sangiovanni-Vincentelli, A., Murray, R., Donze, A.,
Seshia, S.: A contract-based methodology for aircraft electric power system design. IEEE
Access (November 2014), http://icyphy.org/pubs/35.html

23. Riaza, R.: Differential-algebraic systems: analytical aspects and circuit applications. World
Scientific (2008)

24. Riaza, R.: Differential-algebraic systems analytical aspects and circuit applications. World
Scientific, Singapore, SG (2008)

25. SAE International: AIR 6110 - Contiguous Aircraft/System Development Process Example
(2011)

26. Skaar, D.L.: Using the superposition method to formulate the state variable matrix for linear
networks. IEEE Transactions on Education 44(4), 311–314 (Nov 2001)

27. Tiwari, A.: HybridSAL Relational Abstracter. In: CAV. pp. 725–731 (2012)
28. Tiwari, A.: Time-aware abstractions in HybridSal. In: CAV. pp. 504–510 (2015), http:

//dx.doi.org/10.1007/978-3-319-21690-4_34
29. Zaki, M.H., Tahar, S., Bois, G.: Formal verification of analog and mixed signal designs:

Survey and comparison. In: 2006 IEEE North-East Workshop on Circuits and Systems. pp.
281–284 (June 2006)

30. Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Piecewise linear modeling of nonlinear de-
vices for formal verification of analog circuits. In: FMCAD. pp. 196–203 (2012), http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462574

A Motivating example

Figure 2 shows an electrical switched network that contains a voltage source (Vs), re-
sistors (R0, R1, R2), switches (S1, S2), fuses (F1, F2) and capacitors (C1, C2).

The network contains 4 different switching elements: the switches and the fuses.
Both kind of components may be closed or open, respectively connecting or discon-
necting a branch of the circuit. While a switch opens or closes non-deterministically 4,
the fuse opens or closes depending on the current that flows through it (i.e. the switch-
ing is autonomous in this case). Since there are 4 different switching elements, which
can be either open or closed, the network has in total 24 discrete configurations. In
turn, each configuration induces a different topology of the network. For example, in
the network of Fig. 2, when all the switching elements are closed we have the circuit
where the branch with R1 and C1 is connected in parallel with the branch with R2 and
C2, and both of them are connected in series with the generator Vs. We obtain a new
configuration by just opening S2, which disconnects R2 and C2.

The final goal of our approach is to validate the network and to obtain a hybrid
automaton that is equivalent to the network, and that can be further used to verify func-
tional properties of the network.

Obtaining a hybrid automaton is a “simple” problem. The naive approach consists
of enumerating all the discrete configurations and, for each configuration, either obtain
an Ordinary Differential Equation (reformulation step) or report that the configuration is
not valid (validation step). The final result is a hybrid automaton that has a location for
each discrete configuration of the network. For example, consider the configuration
where S1 and F1 are closed while S2 and F2 are open. The whole procedure consists of
the following steps.

1. Obtain a Differential-Algebraic Equation (Figure 8) that describes the behavior of
the system (there exist several methods, for example the Sparse Tableau Formula-
tion or Modified Nodal Analysis).

Fig. 8. DAE

2. Validate the network. This step reduces to verify some topological properties on the
network graph, namely, the absence of VC-loops and IL-cutsets and the connected-
ness. (see Sec. 3).

4 In this paper we do not consider external controllers that interact with the circuit.

For instance, consider the circuit of Figure 2 extended with a new switch S3 con-
nected to the left-hand side terminals of the capacitors C1 and C2. Such new circuit
has 25 configurations. When S3 is open we get the 24 configurations of the orig-
inal circuit, but when S3 is closed we get 24 new configurations that contain the
VC-loop of the two capacitors C1 and C2.
In this case the hybrid automaton cannot be built, and the designer must be in-
formed, reporting that those configurations are degenerate.

3. Rewrite the DAE as an ODE by algebraic manipulations. In our example, if R0 =
R1 = R2 = 1 and C1 = C2 = 2, the corresponding ODE is:

v̇c1 = −1

4
vc1 + 0vc2 +

1

4
vS (4)

v̇c2 = 0vc1 + 0vc2 + 0vS (5)

The main issue with switched systems is that the number of discrete configurations
of the network is exponential in the number of switching elements. Thus, explicitly
enumerating these configurations is not feasible. To overcome the problem, both for the
validation and reformulation step, we use a symbolic representation of the network and
we use a Satisfiability Modulo Theory (SMT) solver to reason over it.

The validation step is reduced to check the satisfiability of two existentially quanti-
fied formulas, which implicitly encodes the DAEs of the exponential number of discrete
configurations.

The reformulation step returns a symbolic hybrid automaton, where all the discrete
configurations that have the same ODE are grouped together. For example, the hybrid
automaton of the example in Fig. 2 has 4 “symbolic locations”, instead of 24. The
approach randomly pick a fresh discrete configuration, computes its ODE reformulation
and then finds and group together all the other equivalent configurations, which have
the same ODE. The Table 2 shows such partitioning for the circuit of Figure 2. For the
sake of conciseness, we represent the sixteen system configuration as a decimal number,
from 0 to 15. Every number corresponds to the decimal conversion of the binary word
〈S1, F1, S2, F2〉 where every element takes value 0 if closed, and 1 if open.

ODEi for v̇c1 , v̇c2 ODE1 ODE2 ODE3 ODE4

Configuration eq. class {0} {1,2,3} {4,8,12} {5,6,7,9,10,11,13,14,15}

Table 2. Partitioning of the configurations by equivalence on the global ODE.

Moreover, we further explore how we can obtain different partitionings of the dis-
crete configurations of the system. The idea is to group together all the discrete config-
urations that define the same ODE for a single variable, instead of grouping the config-
urations that have the same system of ODEs (i.e. we look at a single variable and not
at the whole set of controlled variables of the system). For example, consider again the
circuit of Figure 2. The partitioning that considers the single variables reformulation is
shown in Table 3.

ODE1
i for v̇c1 ODE1

1 ODE1
2 ODE1

3

Configuration eq. class {0} {1,2,3} {4,5,6,7,8,9,10,11,12,13,14,15}
ODE2

i for v̇c2 ODE2
1 ODE2

2 ODE2
3

Configuration eq. class {0} {4,8,12} {1,2,3,5,6,7,9,10,11,13,14,15}

Table 3. Partitioning of the configurations by equivalence on the single ODE variable.

In practice, in the partitioning we can consider different levels of granularity: we
can group together configurations that have the same ODE for an arbitrary subset of the
variables of the system. By exploring different partitioning, our conjecture is of being
able to obtain larger sets of equivalent discrete configurations, as shown in Tables 2, 3,
leading to more concise hybrid automata through a reduces number of reformulations.
The trade-off is not immediate, since we need to perform a reformulation for each vari-
able of the system.

B Hybrid automaton semantics

A state of a hybrid automaton H = 〈D,R, Init, Invar, Trans, F low〉 is an assign-
ment s to the variables D ∪R.

Definition 9 (Run of the hybrid automaton). A sequence of states s0
δ1→ s1

δ2→ . . .
δk→

sk is a path of the hybrid automaton H if:

– s0 |= Init and for 0 < i ≤ k, si is a state of H;

– for 1 ≤ i ≤ k, δj ∈ R ∪ {d} and si−1
δi→ si we have that either: 1) Discrete

transition: δi = d, 〈si−1, δi, si〉 |= Trans, si−i |= Invar and si |= Invar.
2) Continuous transition: δi ∈ R, δi > 0, si−1|D = si|D, and there exists a con-
tinuous differentiable function f : [0, δi] → R|R| such that: f(0) = si−1|R and
f(δi) = si|R, si−1 |= Invar, si |= Invar, ∀ε ∈ [0, δi], 〈si−1|D, f(ε), ḟ(ε)〉 |=
Flow, ∀ε ∈ [0, δi], 〈si−1|D, f(ε)〉 |= Invar.

C Proofs

Lemma 1. The formula valvi (resp. valii) is satisfiable for all configurations µ ∈ 2MG

if and only if the switched electrical network G does not have any VC-loops (resp. IL-
cutsets) involving vi (resp. ii).

Proof. In the following, we prove the lemma in the case of the variable vi of the com-
ponent ei, while the proof in the case of ii is analogous, considering as equation the
sum of the current on all the elements of a cutset, instead of the sum of all the voltage
in a loop.

(⇒) If valvi is satisfiable for all configurations, thenG does not have any VC-loops.
By absurd, suppose that for a discrete configuration µ ∈ 2MG of G there exists

a VC-loop on the component ei. Then, there exists a loop n0, e0, . . . , nk+1 ∈ N ×

(E × N)k, where ej = ei, for j ∈ [0, k], and we have the following KV L condition∑
e∈{e0,...,ek} ve = 0. Notice that this condition is encoded in the ψDAEG

.
Then the formula valvi is not satisfiable for µ (vi is 1 and the other e-s are 0),

deriving a contradiction.
(⇐) IfG does not have any VC-loops, then valvi is satisfiable for all configurations.
By absurd, suppose that valvi is unsatisfiable for µ. By construction, we have that

the DAE for each discrete configuration is a homogeneous system that has a solution if
all the continuous variables CG are set to 0 (in particular ψDAEG

∧∧
z∈XG∪UG

z = 0
is satisfiable). Thus, we have that valvi is unsatisfiable because of vi = 1∧∧
l∈XG∪UG\{vi} l = 0 and the KV L equations that relate the set of voltage variables of

the network. Then, there exists a VC-loop.

Lemma 2. The formula und is satisfiable for some configuration µ ∈ 2MG if and only
if there exists a variable y ∈ YG that is underdetermined.

Proof. (⇒) If und is satisfiable for some configuration, then there exists a variable
y ∈ YG that is underdetermined.

If und is satisfiable for some configuration, then we have two assignments to the
continuous variables of the network that differ for the value of the variable y. This
follows from the assumption that the DAE is homogeneous.

(⇐) If there exists a variable y ∈ YG that is underdetermined in µ, then und is
satisfiable for µ.

There exist two configurations of the network, µ′ and µ′′, that differ only for the
value of y (since y is underdetermined). Since the DAE is homogeneous, at least one of
the two configurations satisfies y 6= 0. This makes the term

∨
y∈YG

(y 6= 0)) true.
The other term ψDAEG

∧∧
z∈XG∪UG

(z = 0) is trivially satisfied due to the homo-
geneity of the DAE.

Thus, und is satisfiable.

D Additional Experimental Results

D.1 DC-DC converter reformulation

In Figure 9 we show the ODEs resulting from the reformulation of the DC-DC convert-
ers restricted to the valid configurations. The benchmarks have been instantiated with
the following parameters: R = 3, C = 2, and L = 5.

D.2 Scalable benchmarks

In this section we present additional experimental results for the scalable benchmarks.
Table 4 show the size of the benchmarks in terms of system configurations and refor-
mulation variables.

Figures 10, 11 12 show the total amount of equivalence classes discovered by the
reformulation strategies.

Figures 13, 14 15 show the size of the largest mode partition discovered by the
different reformulation strategies. Noteworthy, in the case of the NLTL benchmark re-
formulated with the Single granularity, the largest partition has size 2 independently
from the problem size.

Fig. 9. Reformulation of the DC-DC converters restricted to the valid configurations.

Fig. 10. SRCN. Cumulative
mode partitioning.

Fig. 11. NLTL. Cumulative
mode partitioning.

Fig. 12. WBS. Cumulative
mode partitioning.

Fig. 13. SRCN. Largest
mode partition.

Fig. 14. NLTL. Largest mode
partition.

Fig. 15. WBS. Largest mode
partition.

N 1 2 3 4 5 6 7 8 9 10
SRCN Modes 4 16 64 256 1024 4096 16384 65536
SRCN Input Vars U 1 1 1 1 1 1 1 1
SRCN State Vars X 1 2 3 4 5 6 7 8
SRCN Ref. Vars Y 1 2 3 4 5 6 7 8
NLTL Modes 4 16 64 256 1024 4096 16384 65536 262144 1048576
NLTL Input Vars U 1 1 1 1 1 1 1 1 1 1
NLTL State Vars X 4 8 12 16 20 24 28 32 36 40
NLTL Ref. Vars Y 4 8 12 16 20 24 28 32 36 40
WBS Modes 8 32 128 512 2048 8192
WBS Input Vars U 1 1 1 1 1 1
WBS State Vars X 2 3 4 5 6 7
WBS Ref. Vars Y 3 4 5 6 7 8

Table 4. Benchmark sizes.

