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Abstract. Practical property specification languages such as the IEEE standard
PSL use at their core Sequential Extended Regular Expressions (SERE). In order
to enable the reuse of traditional verification techniques, it is necessary to trans-
late SEREs into automata. SERE are regular expressions built over alphabets re-
sulting from the state variables of the design under analysis. Thus, a traditional
approach to generate the automaton would suffer from the fact that the size of the
alphabet is exponential in the number of symbols in the design.
In this work, we tackle this problem by proposing non-deterministic finite au-
tomata with symbolic representation of transitions labels, by way of proposi-
tional formulas, while states and transitions are explicitly represented. We pro-
vide a symbolic version of the algorithms for all the major operations over non-
deterministic finite automata. The approach has been implemented in the AUTLIB

library, with Binary Decision Diagrams (BDD) used to represent transition labels.
We carried out a thorough experimental evaluation over a set of realistic bench-
marks, comparing our library against MONA (which uses deterministic finite au-
tomata with BDD-based symbolic transitions), and against GRAZ (which features
non-deterministic finite automata with a DNF-based representation of the labels).
Experimental results over a realistic set of benchmarks show that both features of
AUTLIB (the ability to deal with non-determinism, and a BDD-based treatment
of labels) are fundamental to achieve acceptable performance.

1 Introduction

Property specification languages (e.g. the IEEE standard PSL [1] and SVA [20]) are in-
creasingly used to represent requirements of hardware and software components. Such
languages extend the power of temporal operators [14] by featuring at their core an ex-
tended form of regular expressions, called SERE. In order to generalize well-established
model checking techniques [9] from traditional temporal logics to such languages, re-
cent approaches [8] require the ability to generate a finite automaton accepting the lan-
guage of a given SERE.

There exist well-known solutions to the automata construction from regular expres-
sion (cfr., e.g., [11, 6, 4, 21]). These approaches are in principle valid in the context of
SEREs, which also represent regular languages. However, they are inefficient in the
context of SEREs mainly for the following reasons.
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First, the alphabet of a SERE over a set of atomic propositions P is ΣP = 2P , i.e.
the powerset of the set of atomic propositions. This means that the size of the alphabet
grows exponentially in the number of atomic propositions. In real PSL formulas, the
number of atomic propositions can be large, thus inducing a huge alphabet.

Second, SEREs are concise using Boolean formulas over atomic propositions as
atomic regular expressions. Boolean formulas represent a set of letters of alphabet, a
classical automata construction would force an explicit enumeration of the letters (i.e.
the models of a formula), which is exponential.

We tackle this problem by proposing non-deterministic finite automata with a sym-
bolic representation of transitions labels (NFASL). The idea is to represent explicitly
states and transitions, and to represent the set of all transitions between two states with
just one transition labeled with a Boolean formula. This representation is more concise,
since multiple transitions can be collapsed together. Moreover, it avoids an explicit
enumerations of the alphabet letters, at the price of applying symbolic transformations
when combining transition labels. To this extent, we provide a symbolic version of the
algorithms for all the major operations over NFASL, and a procedure to map a SERE
into an NFASL. The approach has been implemented in the AUTLIB library, using Bi-
nary Decision Diagrams (BDDs) to represent transition labels.

We carried out a thorough experimental evaluation over a set of realistic bench-
marks, comparing our AUTLIB library against MONA and GRAZ. MONA is a well
known and optimized BDD-based procedure that uses deterministic finite automata with
a symbolic representation of the transition relation. GRAZ is a library that features non-
deterministic finite automata with a semi-symbolic representation of transition labels,
based on Disjunctive Normal Form (DNF). Experimental results over a realistic set of
benchmarks show substantial advantages over either competitor, and substantiate the
claim that both features of AUTLIB (the ability to deal with non-determinism, and a
fully symbolic treatment of labels) are fundamental to achieve acceptable performance.

The paper is structured as follows. In Sec. 2 we present some background on SERE.
In Sec. 3 we formalize the notion of NFASLs. In Sec. 4 we compare our approach with
related work, and in Sec. 5 we experimentally evaluate the AUTLIB library. In Sec. 6
we draw some conclusions and outline directions for future research.

2 Regular Expressions for Property Specification

PSL is an IEEE-standard language [1] for the specification of hardware requirements,
based on a combination of Linear Temporal Logic [14] with SERE, a variant of classic
regular expressions [11]. A key difference of SEREs with respect to classic regular
expressions is that a letter in the alphabet of a SERE is a truth assignment to a set of
atomic propositions, since SEREs are defined over Boolean formulas. In this section we
formally define syntax and semantics of SEREs.

Notation We consider regular languages parameterized by a set of atomic propositions
P . The alphabet of such languages is given by the set ΣP = 2P of truth assignments to
the propositions of P . We will use BP to denote the set of Boolean formulas (obtained
applying conjunction ∧, disjunction ∨ and negation ¬) over the elements of P . We use



`,`′, `1,. . .,`n to refer to a letter in the alphabet ΣP . A finite word is a finite sequence of
letters. We use v, w,w1, w2 to denote finite words andΣ∗P to denote the set of all words
in ΣP . Given v = `0, `1, . . . , `n−1 ∈ Σ∗P and w = `′0, `

′
1, . . . , `

′
n−1 ∈ Σ∗P , vw =

`0, `1, . . . , `n−1, `
′
0, `
′
1, . . . , `

′
n−1 is the concatenation of words v and w. wi denotes the

(i + 1)th letter of w, where the first letter is w0 while wi.. is the suffix of w starting at
wi.

Syntax and semantics The syntax of SEREs is defined as follows:

Definition 1 (SEREs syntax). An atomic expression is either a Boolean formula φ ∈
BP or the empty word denoted with ε. SEREs are obtained by applying recursively the
following operators to the atomic expressions:

– if r1, r2 are SEREs, then r1 ; r2, r1 : r2, r1 ||| r2, r1 & r2 and r1 && r2 are SEREs;
– if r is a SERE, then r[*] and r[+] are SEREs.

Boolean formulas are interpreted over letters in ΣP : a propositional atom p is true
in ` iff p ∈ `, false otherwise; Boolean connectives are interpreted in the standard way.
If ` is a letter and b a Boolean formula, we denote with ` |=B b by the fact that ` is a
model of b.

Definition 2 (SERE semantics). Letw be a finite word overΣP , φ a Boolean formula,
r, r1, r2 SEREs, then the satisfaction relation w |= r is defined as follows:

– w |= ε iff |w| = 0
– w |= φ iff |w| = 1 and w0 |=B φ
– w |= r1 ; r2 iff ∃w1, w2 s.t. w = w1w2, w1 |= r1, w2 |= r2
– w |= r1 : r2 iff ∃w1, w2, ` s.t. w = w1`w2, w1` |= r1, `w2 |= r2
– w |= r1 ||| r2 iff w |= r1 or w |= r2
– w |= r1 & r2 iff either w |= r1 and ∃w1, w2 s.t. w = w1w2, w1 |= r2, or

w |= r2 and ∃w1, w2 s.t. w = w1w2, w1 |= r1
– w |= r1 && r2 iff w |= r1 and w |= r2
– w |= r[*] iff |w| = 0 or ∃w1, w2 s.t. |w1| 6= 0, w = w1w2, w1 |= r, w2 |= r[*]
– w |= r[+] iff ∃w1, w2 s.t. w = w1w2, w1 |= r, w2 |= r[*]

Definition 3 (Language of SEREs). The language of a SERE r is the set L(r) :=
{w ∈ ΣP∗ | w |= r}.

Example 1. The SERE {start;{busy}[*];end}&&{{¬abort}[*]} overP = {start, busy,
end, abort}may represent the sequences of a potential hardware procedure that lasts for
an uncertain number of cycles while never aborted. The SERE {req;{{read;{¬cancel r∧
¬done}[*]} ||| {write;{¬cancel w∧¬done}[*]}};done} overP = {req, read, write,
cancel r, cancel w, done} may represent the sequences of a request of read or write
which is accomplished without being canceled.



3 Non-Deterministic Finite Automata with Symbolic Labels

3.1 Symbolic Representation

Definition 4 (NFASL). A Non-deterministic Finite-state Automaton with Symbolic La-
bels (NFASL) is a tuple A = 〈P, Q, q0, ρ, F 〉, where

– P is the set of atomic propositions,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– ρ : Q→ 2BP×Q is the symbolic transition function,
– F ⊆ Q is the set of final states.

By definition, an NFASL can move from a state q non-deterministically choosing
a pair of label-state. The definition of transition function differs from the classic one,
where a move from state q is determined by a single letter of the alphabet, namely
ρC : Q × ΣP → 2Q. Given, ρ, we can define ρC as ρC(q, l) := {q′ | 〈φ, q′〉 ∈
ρ(q) for some φ s.t. l |= φ}A tuple 〈q, φ, q′〉, where 〈φ, q′〉 ∈ ρ(q), is called a symbolic
transition. A symbolic transition 〈q, φ, q′〉 is said feasible iff φ is satisfiable.

Definition 5 (NFASL language). An NFASL A = 〈P, Q, q0, ρ, F 〉 accepts a word
l1, . . . , ln ∈ Σ∗P iff there exists a sequence of states π = q0, q1, . . . , qn such that
q0 = q0, qn ∈ F , and, for all i, 1 ≤ i ≤ n, there exists φi ∈ BP such that
〈φi, qi〉 ∈ ρ(qi−1) and li |= φi. The set L(A) ⊆ Σ∗P of words accepted by A is called
language of A.

Definition 6 (NFASL path). A path of an NFASL A = 〈P, Q, q0, ρ, F 〉 is a sequence
of states π = q0, q1, . . . , qn such that q0 = q0 and, for all i, 1 ≤ i ≤ n, there exists
φ ∈ BP such that 〈φ, qi〉 ∈ ρ(qi−1). π is accepting iff qn ∈ F .

We say that a state q is reachable in A iff there exists a path π = q0, q1, . . . , qn = q
ofA. An automaton is trim iff all its states are contained in some accepting path. Finally,
an automaton is said to be normalized iff for each pair of states q0, q1 there exists at most
one transition from q0 to q1.

3.2 From SERE to NFASL

In the following, we explain the procedure to convert a SERE into the corresponding
NFASL. The translation is recursively based on the structure of the SERE and can be
seen as a variant of the Berry-Sethi construction (cfr. [21]). The base cases are the
automata to recognize ε and the atomic expressions. The step cases map directly on the
corresponding operations on automata.

Let us consider the NFASLsA1 = 〈P1, Q1, q
0
1 , ρ1, F1〉 andA2 = 〈P2, Q2, q

0
2 , ρ2, F2〉.

Definition 7 (Intersection). The intersection A1 ∩ A2 of A1 and A2 is the NFASL
A = 〈P1 ∪ P2, Q1 ×Q2, q

0
1 × q02 , ρ, F1 × F2〉, where

ρ(q1 × q2) = {〈φ1 ∧ φ2, q
′
1 × q′2〉 | 〈φ1, q

′
1〉 ∈ ρ1(q1), 〈φ2, q

′
2〉 ∈ ρ2(q2)}.



Definition 8 (Union). The union A1 ∪ A2 of A1 and A2 is the NFASL A = 〈P1 ∪
P2, {q0} ∪Q1 ∪Q2, q

0, ρ, F 〉, where q0 is a new state , F = q0 ∪ F1 ∪ F2 if q01 ∈ F1

or q02 ∈ F2 else F = F1 ∪ F2, and

ρ(q) =

ρ1(q01) ∪ ρ2(q02) if q = q0

ρ1(q) if q ∈ Q1

ρ2(q) if q ∈ Q2

Definition 9 (Concatenation). The concatenation A1;A2 of A1 and A2 is the NFASL
A = 〈P1 ∪ P2, Q1 ∪Q2, q

0
1 , ρ, F 〉, where F = F2 if q02 6∈ F2 else F = F1 ∪ F2, and

ρ(q) =

ρ1(q) ∪ ρ2(q02) if q ∈ F1

ρ1(q) if q ∈ Q1 \ F1

ρ2(q) if q ∈ Q2

Definition 10 (Fusion). The fusion A1 : A2 of A1 and A2 is the NFASL A = 〈P1 ∪
P2, Q = Q1 ∪Q2, q

0
1 , ρ, F2〉, where

ρ(q) =
{
ρ1(q) ∪ {〈φ1 ∧ φ2, q

′
2〉 | 〈φ1, q

′
1〉 ∈ ρ1(q1), q′1 ∈ F1, 〈φ2, q

′
2〉 ∈ ρ2(q02)} if q ∈ Q1

ρ2(q) if q ∈ Q2

Definition 11 (Star). The starA1∗ ofA1 is the NFASLA = 〈P1, Q1, q
0
1 , ρ, F1∪{q0}〉,

where

ρ(q) =
{
ρ1(q) ∪ ρ1(q01) if q ∈ F1

ρ1(q) if q ∈ Q1 \ F1

Definition 12 (Plus). The plusA1+ ofA1 is the NFASLA = 〈P1, Q1, q
0
1 , ρ, F1〉, where

ρ(q) =
{
ρ1(q) ∪ ρ1(q01) if q ∈ F1

ρ1(q) if q ∈ Q1 \ F1

The conversion algorithm is detailed in Figure 1. The function construct builds
the automaton starting from the initial state and adding only feasible transitions and
reachable states. Moreover, it merges the transitions connecting the same pair of states
producing a normalized automaton (see [15] for further details). Finally, the function
trim is used to remove states which do not reach the accepting states due to inconsistent
combination of labels (see Definition of A1 ∩A2 and A1 : A2).

Theorem 1. If A = SERE2NFASL(r), then L(A) = L(r).

The construction matches the complexity of the standard algorithms, in that it builds
an automaton with a linear number of states if the SERE does not contain any intersec-
tion operator, while it is in general exponential.

3.3 Determinization

Definition 13 (Determinization). Given an NFASL A1, the determinization AD1 of A1

is the NFASL A = 〈P, Q, q0, ρ, F 〉, where P = P1, Q = 2Q1 , q0 = {q01} and

– ρ(q) = {〈φ, q′〉 | φ =
∧
〈φ1,q′1〉∈S

φ1∧
∧
〈φ1,q′1〉∈S′

¬φ1, q
′ = {q′1}〈φ1,q′1〉∈S , for some S ⊆⋃

q1∈q ρ1(q1) and S′ =
⋃
q1∈q ρ1(q1) \ S};

– F = {q | q ∩ F1 6= ∅}.

Theorem 2. AD1 is deterministic and L(AD1 ) = L(A1)



Algorithm SERE2NFASL(r)
1. switch r
2. case ε: A = 〈P, {q}, q, ρ, {q}〉 with ρ(q) = ∅
3. case φ: A = 〈P, {q0, q1}, q0, ρ, {q1}〉 with ρ(q0) = {〈φ, q1〉} and ρ(q1) = ∅
4. case r1 ; r2
5. A1 = SERE2NFASL(r1); A2 = SERE2NFASL(r2)
6. A = construct(A1;A2)
7. case r1 : r2
8. A1 = SERE2NFASL(r1); A2 = SERE2NFASL(r2)
9. A = trim(construct(A1 : A2))
10. case r1 ||| r2
11. A1 = SERE2NFASL(r1); A2 = SERE2NFASL(r2)
12. A = construct(A1 ∪A2)
13. case r1 && r2
14. A1 = SERE2NFASL(r1); A2 = SERE2NFASL(r2)
15. A = trim(construct(A1 ∩A2))
16. case r1 & r2
17. A = SERE2NFASL({r1&&{r2;{>}[*]}} ||| {{r1;{>}[*]}&&r2})
18. case r1[*]
19. A1 = SERE2NFASL(r1)
20. A = construct(A1∗)
21. case r1[+]
22. A1 = SERE2NFASL(r1)
23. A = construct(A1+)
24. return A

Fig. 1. Algorithm to compile a SERE into a NFASL.
3.4 NFASL reduction based on bi-simulation

We use the quotient graph with regard to the bi-simulation relation to reduce the state
space of the NFASL. This is a standard technique (cfr., e.g., [12]), but we adapt the
definition of simulation to the symbolic labels.

Given an NFASL A = 〈P, Q, q0, ρ, F 〉, the bi-simulation relation ≡R is defined as
the coarsest equivalence relation over Q that satisfies:

P1 ) ≡R ∩(F × (Q \ F )) = ∅,
P2C) for any p, q ∈ Q, a ∈ ΣP , if p ≡R q then for all q′ ∈ ρC(q, a), there exists

p′ ∈ ρ(p, a) such that q′ ≡R p′.

We define an equivalent condition:

P2 ) for any p, q ∈ Q, if p ≡R q then for all 〈φ, q′〉 ∈ ρ(q), then φ→
∨
〈φ′,p′〉∈ρ(p),q′≡Rp′

φ′.

Theorem 3. P2C is equivalent to P2.

4 Related Work

Several works focus on the construction of automata from regular expressions. Most
of them (e.g. [13, 17, 5]) use classic automata representations, where states and labels



are represented explicitly. Other implementations (e.g., AUTOMATA1 and LIBFA2) have
a partially-symbolic representation of labels (e.g., intervals of letters). However, these
approaches are inefficient when considering Boolean formulas as atomic expressions.

Symbolic representations of finite state automata have been investigated in several
works. As in our approach, MONA [10] uses an explicit representation for states, but a
symbolic representation for the entire transition relation. The symbolic representation
is achieved using a variant of BDDs, called shared multi-terminal BDDs (SMBDDs).
Roots and leaves in a SMBDD are states of the automaton, while the internal nodes are
atomic propositions. A transition is represented with a path from a root to a leaf. Unlike
our approach, MONA cannot represent NFAs: given a state and a letter, there is a unique
leaf node. Moreover, MONA does not implement regular languages operations such as
concatenation and Kleene closure. STRANGER [22] is a library developed in the context
of static strings analysis for Web applications. It is implemented on top of MONA, and
extends it with more operations on automata.

Other approaches represent automata states and transitions explicitly and use a sym-
bolic representation of labels, as in our case. The GRAZ library [16] represents NFAs
where transitions are labelled with DNF formulas. Pairs of labels are combined by mul-
tiplying all the disjuncts of the first label with the disjuncts of the second label. This
library was previously used in the NUSMV [7] model checker to manage the construc-
tion of automata from SEREs [8]. Also in FSA [18] a predicate is used as label for a
transition. The library uses Prolog and not BDDs to represent a predicate and to check
its satisfiability. FSA describes the algorithms that we use to perform intersection and
determinization. In [2] the authors give an efficient implementation of minimization
for NFAs with large alphabets. The representation of NFA is explicit for states, and
symbolic (BDD-based) for labels. This work does not take into account the construc-
tion of automata from regular expressions. Also REX [19] uses an approach similar in
spirit to ours, where states are explicit and labels are symbolic. The key difference is
that reasoning on symbolic labels is done using a Satisfiability Modulo Theory (SMT)
solver instead of BDDs. As ours, the approach aims at dealing with extended regular
expressions. However not all SEREs operations are covered (e.g. the fusion operator is
missing).

In the context of circuit synthesis for PSL monitoring, a construction of the automata
from SEREs is described in [3]. The approach is very similar to the one presented here,
using the same approach of handling symbolic labels on automata transitions. However,
the automata and the translation are not formally presented. Unfeasible transitions are
not removed, and no detail is given on how formulas are manipulated (BDD, DNF,
or strings). The goal of the approach indeed is not the automata construction, but the
generation of the circuit and the evaluation regards only the final hardware circuits. In
particular, there is no comparison with standard libraries for automata manipulation.

1
http://www.brics.dk/automaton/

2
http://augeas.net/libfa/



5 Experimental Evaluation

The approach decribed in previous sections has been implemented in the AUTLIB li-
brary. The library is written in C, using adjacency lists to represent transitions outgoing
from a state, and BDDs from the CUDD package (http://vlsi.colorado.edu/
˜fabio) for transition labels. The architecture is extensible to other forms of Boolean
reasoning, such as propositional satisfiability (SAT), and to SMT. AUTLIB is used at
the core of an extension of the NUSMV [7] model checker able to deal with the PSL
language, and, as explained in [8], it is used to generate the automata necessary for PSL
verification.

Set up The proposed algorithms are evaluated in terms of construction time of an au-
tomaton corresponding to a SERE, and number of states of the resulting automaton.
The AUTLIB library was evaluated in two modes, with and without reduction. In the
first mode, the activation of reduction is controlled by a simple heuristic, namely re-
duction is run only after |||, && and & operators. For the comparison, we use a test suite
of 1200 SEREs, obtained by randomly modifying patterns extracted from industrial
case studies. The SEREs are combinations of concatenations where the top level oper-
ators are randomly chosen in {|||,&&,&, [*], [+]}. The concatenations combine atomic
Boolean expressions, or repetition of Boolean expressions using [*] or [+]. The num-
ber of concatenated SEREs is randomly chosen in the range [2, 10]. We generated 12
different families of benchmarks, choosing a possible configuration of parameters. The
parameters are the number of top-level operators (which ranges in {1, 2}), the depth of
Boolean expressions (which ranges in {2, 3}) and the number of atomic propositions
(which ranges in {8, 10, 15}). For each family we generated 100 random SEREs.

AUTLIB is compared against the GRAZ library [16] and MONA [10]. Also for
GRAZ we considered two operating modes: with and without NFA reduction. We com-
pared with MONA through the STRANGER library [22], that provides Concatenation
and Star as additional functions, and minimizes the DFA after such operations.

We ran the experiments on a Linux machine equipped with a 2.66GHz Intel(R)
Core(TM)2 Quad Core, and 4GB of RAM with a time out of 120 seconds and memory
limit of 3Gb. All results, together with the binaries and test cases necessary to reproduce
them, are available at http://es.fbk.eu/people/mover/tests/CIAA10/.

Results The results are presented in two different forms. Survival plots are used to pro-
vide a global view of the results: for each competitor, the “snake” shows the cumulative
time required to solve a fixed number of instances. Pairwise comparison is obtained
by means of scatter plots, where the x and y coordinates for each point represent the
performance of the compared solvers on a given sample.

Figure 2(a) shows the cumulative plot for automata construction times for all the
evaluated libraries. The GRAZ library, with and without reduction, shows poor perfor-
mances, solving about 200 over 1200 examples. MONA can solve about 1050 examples
while AUTLIB solves all the random generated SEREs. AUTLIB, with and without
minimization, is much faster than MONA, and almost immediate on some instances.

AUTLIB and GRAZ can be compared from the scatter plots shown in Figure 2(c)
and 2(d). All the examples where GRAZ can construct the automaton before timeout are
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trivial for AUTLIB. The bottleneck in the GRAZ approach is due to operations on labels
performed on the DNF structure of formulas. Comparing the number of states, GRAZ
generates bigger automata than AUTLIB. This is due to the management of labels in
GRAZ, where for performance reasons the satisfiability check of a conjunction of labels
is not complete. Transitions with inconsistent labels are thus created, possibly avoiding
the pruning of unreachable states.

Figure 2(e) shows the scatter plot that compares construction times for MONA, on
x axes, and AUTLIB, on y axes. AUTLIB outperforms MONA on every example. These
results can be explained looking at Figure 2(f), that shows the number of states for
the constructed automata. It is not surprising that DFAs generated by MONA are much
bigger than NFASL of AUTLIB, since non-deterministic automata have a much succinct
representation, which better adapts to common SERE expressions.

We also tested the effect of reductions for AUTLIB and GRAZ. For AUTLIB the
benefits deriving from reductions, i.e., a reduced number of states, seem to be modest
with respect to an increased construction time. As for GRAZ, although the reduction is a
costly operation in terms of time, the benefits in the number of states are more evident.
For lack of space, the scatter plots of the reductions are reported in appendix.



6 Conclusions and Future Work

In this paper we have addressed the problem of providing automata-based techniques
suitable for the manipulation of regular expressions arising in specification languages
such as PSL. We propose an approach where non-deterministic finite automata are
equipped with fully symbolic labels, represented by means of BDDs, over a given set
of variables. We implemented an efficient library where all the standard functionali-
ties are provided. The experiments demonstrate the need for the compactness of non-
deterministic finite automata (compared to approaches based on deterministic finite au-
tomata), and the efficiency of a fully symbolic approach to label representation (with
respect to an approach based on sets of partial assignments).

In the future, we plan to extend the experimentation with additional benchmarks,
and to pinpoint possible bottlenecks of the current implementation. We will also inves-
tigate the use of alternative symbolic technique (e.g. SAT and SMT solvers), and will
develop fully symbolic minimization procedures.

Acknowledgments We thank I. Pill for support with the GRAZ library, and O. Ibarra,
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A Proofs

The correctness of Theorem 1 can be directly deduced by the following Lemma.

Lemma 1.

– L(A1 ∩A2) = L(A1) ∩ L(A2)
– L(A1 ∪A2) = L(A1) ∪ L(A2)
– L(A1;A2) = L(A1);L(A2)
– L(A1 : A2) = L(A1) : L(A2)
– L(A1∗) = L(A1)∗
– L(A1+) = L(A1)+

where we used the following notation on regular languages:

– L1;L2 = {w | ∃w1, w2 s.t. w = w1w2, w1 ∈ L1, w2 ∈ L2}
– L1 : L2 = {w | ∃w1, w2, ` s.t. w = w1`w2, w1` ∈ L1, `w2 ∈ L2}
– L∗ = {w | |w| = 0 or ∃w1, w2, . . . , wn s.t. w = w1w2 . . . wn, for all i, 1 ≤ i ≤
n, wi ∈ L}

– L+ = {w | ∃w1, w2, . . . , wn s.t. w = w1w2 . . . wn, for all i, 1 ≤ i ≤ n, wi ∈ L}

The proof of the Lemma is quite straightforward and we detail the intersection case
(the other cases are similar).

Proof (L(A1∩A2) = L(A1)∩L(A2)). From the definition ofA1∩A2,w = l1, . . . , ln ∈
L(A1∩A2) iff there exists a sequence of states π = q0,1×q0,2, q1,1×q1,2, . . . , qn,1×qn,2
such that q0,1 = q01 , q0,2 = q02 , qn,1 ∈ F1, qn,2 ∈ F2 and, for all i, 1 ≤ i ≤ n, there exist
φi,1 ∈ BP1 and φi,2 ∈ BP2 such that 〈φi,1, qi,1〉 ∈ ρ1(qi−1,1), 〈φi,2, qi,2〉 ∈ ρ2(qi−1,2),
li |= φi,1, and li |= φi,2. This is true iff w ∈ L(A1) and w ∈ L(A2).

With regard to Theorem 2, the proof of the language equivalence is quite straight-
forward. Instead we detail the proof of the determinism.

Proof (AD is deterministic). Given a state q of AD, q corresponds to a set X of states
of A. Consider two transitions 〈q, φ1, q1〉 and 〈q, φ2, q2〉 outgoing from the same state
q. Then, φ1 =

∧
〈φ′1,q′1〉∈S

φ′1 ∧
∧
〈φ′1,q′1〉∈S′

¬φ′1, q1 = {q′1}〈φ′1,q′1〉∈S1 , for some S1 ⊆⋃
q′∈X ρ(q

′)} and S′1 =
⋃
q′∈q ρ(q

′)\S1} and φ2 =
∧
〈φ′2,q′2〉∈S

φ′2∧
∧
〈φ′2,q′2〉∈S′

¬φ′2, q2 =
{q′2}〈φ′2,q′2〉∈S2 , for some S2 ⊆

⋃
q′∈X ρ(q

′)} and S′2 =
⋃
q′∈q ρ(q

′)\S2}. If q1 and q2
are different, then also S1 and S2 must be different. Thus, there exists 〈φd, qd〉 belong-
ing to one set and not to the other. For any letter l either l |= φd or l |= ¬φd. Thus, l
cannot be accepted by both 〈q, φ1, q1〉 and 〈q, φ2, q2〉.

Finally, here is the proof of Theorem 3.

Proof. Let us prove that P2C ⇒ P2.
Suppose p ≡R q. Let us consider 〈φ, q′〉 ∈ ρ(q) and a ∈ Σ such that a |= φ. Then

q′ ∈ ρC(q, a) and by hypothesis there exists p′ ∈ ρ(p, a) such that q′ ≡R p′. Thus there
exists φ′ such that a |= φ′ and 〈φ′, q′〉 ∈ ρ(p′). Thus a |=

∨
〈φ′,p′〉∈ρ(p),q′≡Rp′

φ′.
The other direction is similar.



B Reduction plots
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(g) Construction time (sec.): AUTLIB (X axes) vs
AUTLIB with reduction (Y axes)
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(h) # of states: AUTLIB (X axes) vs AUTLIB with
reduction (Y axes)
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(i) Construction time (sec.): GRAZ (X axes) vs GRAZ
with reduction (Y axes)
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(j) # of states: GRAZ (X axes) vs GRAZ with
reduction (Y axes)


